276 research outputs found
Effects of donor cause of death, ischemia time, inotrope exposure, troponin values, cardiopulmonary resuscitation, electrocardiographic and echocardiographic data on recipient outcomes: A review of the literature
BackgroundHeart transplantation has become standard of care for pediatric patients with either end‐stage heart failure or inoperable congenital heart defects. Despite increasing surgical complexity and overall volume, however, annual transplant rates remain largely unchanged. Data demonstrating pediatric donor heart refusal rates of 50% suggest optimizing donor utilization is critical. This review evaluated the impact of donor characteristics surrounding the time of death on pediatric heart transplant recipient outcomes.MethodsAn extensive literature review was performed to identify articles focused on donor characteristics surrounding the time of death and their impact on pediatric heart transplant recipient outcomes.ResultsPotential pediatric heart transplant recipient institutions commonly receive data from seven different donor death‐related categories with which to determine organ acceptance: cause of death, need for CPR, serum troponin, inotrope exposure, projected donor ischemia time, electrocardiographic, and echocardiographic results. Although DITs up to 8 hours have been reported with comparable recipient outcomes, most data support minimizing this period to <4 hours. CVA as a cause of death may be associated with decreased recipient survival but is rare in the pediatric population. Otherwise, however, in the setting of an acceptable donor heart with a normal echocardiogram, none of the other data categories surrounding donor death negatively impact pediatric heart transplant recipient survival.ConclusionsEchocardiographic evaluation is the most important donor clinical information following declaration of brain death provided to potential recipient institutions. Considering its relative importance, every effort should be made to allow direct image visualization.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/1/petr13676.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/2/petr13676_am.pd
Recommended from our members
Super-resolution fluorescence microscopy reveals clustering behaviour of Chlamydia pneumoniae’s major outer membrane protein
Chlamydiapneumoniaeis a Gram-negative bacterium responsible for a number of humanrespiratory diseases and linked to some chronic inflammatory diseases. The major outer membraneprotein (MOMP) ofChlamydiais a conserved immunologically dominant protein located in the outermembrane, which, together with its surface exposure and abundance, has led to MOMP being themain focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in thechlamydial outer membrane complex through the formation of intermolecular disulphide bonds,although the exact interactions formed are currently unknown. Here, it is proposed that due to thelarge number of cysteines available for disulphide bonding, interactions occur between cysteine-richpockets as opposed to individual residues. Such pockets were identified using a MOMP homologymodel with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in theE. colimembrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM),which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations.These results indicate that disulphide bond formation was not disrupted by single mutants locatedin the cysteine-dense regions and was instead compensated by neighbouring cysteines within thepocket in support of this cysteine-rich pocket hypothesis
Rapid Analysis of Vessel Elements (RAVE): A Tool for Studying Physiologic, Pathologic and Tumor Angiogenesis
Quantification of microvascular network structure is important in a myriad of emerging research fields including microvessel remodeling in response to ischemia and drug therapy, tumor angiogenesis, and retinopathy. To mitigate analyst-specific variation in measurements and to ensure that measurements represent actual changes in vessel network structure and morphology, a reliable and automatic tool for quantifying microvascular network architecture is needed. Moreover, an analysis tool capable of acquiring and processing large data sets will facilitate advanced computational analysis and simulation of microvascular growth and remodeling processes and enable more high throughput discovery. To this end, we have produced an automatic and rapid vessel detection and quantification system using a MATLAB graphical user interface (GUI) that vastly reduces time spent on analysis and greatly increases repeatability. Analysis yields numerical measures of vessel volume fraction, vessel length density, fractal dimension (a measure of tortuosity), and radii of murine vascular networks. Because our GUI is open sourced to all, it can be easily modified to measure parameters such as percent coverage of non-endothelial cells, number of loops in a vascular bed, amount of perfusion and two-dimensional branch angle. Importantly, the GUI is compatible with standard fluorescent staining and imaging protocols, but also has utility analyzing brightfield vascular images, obtained, for example, in dorsal skinfold chambers. A manually measured image can be typically completed in 20 minutes to 1 hour. In stark comparison, using our GUI, image analysis time is reduced to around 1 minute. This drastic reduction in analysis time coupled with increased repeatability makes this tool valuable for all vessel research especially those requiring rapid and reproducible results, such as anti-angiogenic drug screening
Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1
Tumor growth is intimately linked with stromal interactions. Myeloid derived suppressor cells (MDSCs) are dramatically elevated in cancer patients and tumor bearing mice. MDSCs modulate the tumor microenvironment through attenuating host immune response and increasing vascularization.In searching for molecular mediators responsible for pro-tumor functions, we found that regulator of G protein signaling-2 (Rgs2) is highly increased in tumor-derived MDSCs compared to control MDSCs. We further demonstrate that hypoxia, a common feature associated with solid tumors, upregulates the gene expression. Genetic deletion of Rgs2 in mice resulted in a significant retardation of tumor growth, and the tumors exhibit decreased vascular density and increased cell death. Interestingly, deletion of Rgs2 in MDSCs completely abolished their tumor promoting function, suggesting that Rgs2 signaling in MDSCs is responsible for the tumor promoting function. Cytokine array profiling identified that Rgs2-/- tumor MDSCs produce less MCP-1, leading to decreased angiogenesis, which could be restored with addition of recombinant MCP-1.Our data reveal Rgs2 as a critical regulator of the pro-angiogenic function of MDSCs in the tumor microenvironment, through regulating MCP-1 production
Recommended from our members
Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 lysine 27 trimethylation
Down syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL)1 and polysomy 21 is the most frequent somatic aneuploidy amongst all B-ALLs2. Yet, the mechanistic links between chr.21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chr.21q22 confers murine progenitor B cell self-renewal in vitro, maturation defects in vivo, and B-ALL with either BCR-ABL or CRLF2 with activated JAK2. Chr.21q22 triplication suppresses H3K27me3 in progenitor B cells and B-ALLs, and “bivalent” genes with both H3K27me3 and H3K4me3 at their promoters in wild-type progenitor B cells are preferentially overexpressed in triplicated cells. Strikingly, human B-ALLs with polysomy 21 are distinguished by their overexpression of genes marked with H3K27me3 in multiple cell types. Finally, overexpression of HMGN1, a nucleosome remodeling protein encoded on chr.21q223–5, suppresses H3K27me3 and promotes both B cell proliferation in vitro and B-ALL in vivo
Modulators of Prostate Cancer Cell Proliferation and Viability Identified by Short-Hairpin RNA Library Screening
There is significant need to identify novel prostate cancer drug targets because current hormone therapies eventually fail, leading to a drug-resistant and fatal disease termed castration-resistant prostate cancer. To functionally identify genes that, when silenced, decrease prostate cancer cell proliferation or induce cell death in combination with antiandrogens, we employed an RNA interference-based short hairpin RNA barcode screen in LNCaP human prostate cancer cells. We identified and validated four candidate genes (AKT1, PSMC1, STRADA, and TTK) that impaired growth when silenced in androgen receptor positive prostate cancer cells and enhanced the antiproliferative effects of antiandrogens. Inhibition of AKT with a pharmacologic inhibitor also induced apoptosis when combined with antiandrogens, consistent with recent evidence for PI3K and AR pathway crosstalk in prostate cancer cells. Recovery of hairpins targeting a known prostate cancer pathway validates the utility of shRNA library screening in prostate cancer as a broad strategy to identify new candidate drug targets
Characterization of the Contradictory Chromatin Signatures at the 3′ Exons of Zinc Finger Genes
The H3K9me3 histone modification is often found at promoter regions, where it functions to repress transcription. However, we have previously shown that 3′ exons of zinc finger genes (ZNFs) are marked by high levels of H3K9me3. We have now further investigated this unusual location for H3K9me3 in ZNF genes. Neither bioinformatic nor experimental approaches support the hypothesis that the 3′ exons of ZNFs are promoters. We further characterized the histone modifications at the 3′ ZNF exons and found that these regions also contain H3K36me3, a mark of transcriptional elongation. A genome-wide analysis of ChIP-seq data revealed that ZNFs constitute the majority of genes that have high levels of both H3K9me3 and H3K36me3. These results suggested the possibility that the ZNF genes may be imprinted, with one allele transcribed and one allele repressed. To test the hypothesis that the contradictory modifications are due to imprinting, we used a SNP analysis of RNA-seq data to demonstrate that both alleles of certain ZNF genes having H3K9me3 and H3K36me3 are transcribed. We next analyzed isolated ZNF 3′ exons using stably integrated episomes. We found that although the H3K36me3 mark was lost when the 3′ ZNF exon was removed from its natural genomic location, the isolated ZNF 3′ exons retained the H3K9me3 mark. Thus, the H3K9me3 mark at ZNF 3′ exons does not impede transcription and it is regulated independently of the H3K36me3 mark. Finally, we demonstrate a strong relationship between the number of tandemly repeated domains in the 3′ exons and the H3K9me3 mark. We suggest that the H3K9me3 at ZNF 3′ exons may function to protect the genome from inappropriate recombination rather than to regulate transcription
- …