65 research outputs found

    Enhancing Security Patch Identification by Capturing Structures in Commits

    Full text link
    With the rapid increasing number of open source software (OSS), the majority of the software vulnerabilities in the open source components are fixed silently, which leads to the deployed software that integrated them being unable to get a timely update. Hence, it is critical to design a security patch identification system to ensure the security of the utilized software. However, most of the existing works for security patch identification just consider the changed code and the commit message of a commit as a flat sequence of tokens with simple neural networks to learn its semantics, while the structure information is ignored. To address these limitations, in this paper, we propose our well-designed approach E-SPI, which extracts the structure information hidden in a commit for effective identification. Specifically, it consists of the code change encoder to extract the syntactic of the changed code with the BiLSTM to learn the code representation and the message encoder to construct the dependency graph for the commit message with the graph neural network (GNN) to learn the message representation. We further enhance the code change encoder by embedding contextual information related to the changed code. To demonstrate the effectiveness of our approach, we conduct the extensive experiments against six state-of-the-art approaches on the existing dataset and from the real deployment environment. The experimental results confirm that our approach can significantly outperform current state-of-the-art baselines

    Discovery and Validation of Nitroxoline as a Novel STAT3 Inhibitor in Drug-resistant Urothelial Bladder Cancer

    Get PDF
    Repeated cycles of first-line chemotherapy drugs such as doxorubicin (DOX) and cisplatin (CIS) trigger frequent chemoresistance in recurrent urothelial bladder cancer (UBC). Nitroxoline (NTX), an antibiotic to treat urinary tract infections, has been recently repurposed for cancer treatment. Here we aimed to investigate whether NTX suppresses drug-resistant UBC and its molecular mechanism. The drug-resistant cell lines T24/DOX and T24/CIS were established by continual exposure of parental cell line T24 to DOX and CIS, respectively. T24/DOX and T24/CIS cells were resistant to DOX and CIS, respectively, but they were sensitive to NTX time-and dose-dependently. Overexpressions of STAT3 and P-glycoprotein (P-gp) were identified in T24/DOX and T24/CIS, which could be reversed by NTX. Western blot revealed that NTX downregulated p-STAT3, c-Myc, Cyclin D1, CDK4, CDK6, Bcl-xL, Mcl-1, and Survivin, which were further confirmed by Stattic, a selective STAT3 inhibitor. In vivo, NTX exhibited the significant anti-tumor effect in T24/DOX and T24/CIS tumor-bearing mice. These results suggested that NTX-induced P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC were mediated by inhibition of STAT3 signaling. Our findings repurpose NTX as a novel STAT3 inhibitor to induce P-gp reversal, G0/G1 arrest, and apoptosis in drug-resistant UBC

    The Cell Cycle Checkpoint Gene, RAD17 rs1045051, Is Associated with Prostate Cancer Risk

    Get PDF
    Human RAD17, as an agonist of checkpoint signaling, plays an essential role in mediating DNA damage. This hospital-based case-control study aimed to explore the association between RAD17 rs1045051, a missense sin-gle nucleotide polymorphism (SNP), and prostate cancer risk. Subjects were 358 prostate cancer patients and 314 cancer-free urology patients undergoing treatment at the Zhujiang Hospital of Southern Medical University in China. RAD17 gene polymorphism rs1045051 was evaluated by the SNaPshot method. Compared with the RAD17 gene polymorphism rs1045051 AA genotype, there was a higher risk of prostate cancer for the CC gen-otype (adjusted odds ratio [AOR] = 1.731, 95% confidence interval [95%CI] = 1.031−2.908, p = 0.038). Compared with the A allele, the C allele was significantly associated with the disease status (AOR = 1.302, 95%CI = 1.037−1.634, p = 0.023). All these findings indicate that in the SNP rs1045051, both the CC genotype and C allele may have a substantial influence on the prostate cancer risk

    Nitroxoline inhibits bladder cancer progression by reversing EMT process and enhancing anti-tumor immunity

    Get PDF
    Nitroxoline is considered to be an effective treatment for the urinary tract infections. Recently, it has been found to be effective against several cancers. However, few studies have examined the anti-tumor activity of nitroxoline in bladder cancer. The purpose of the study was to reveal the possible mechanisms how nitroxoline inhibited bladder cancer progression. In vitro assay, we demonstrated that nitroxoline inhibited bladder cancer cell growth and migration in a concentration-related manner. Western blot analysis demonstrated that nitroxoline downregulated the expressions of epithelial mesenchymal transition (EMT)-related proteins. Furthermore, treatment with nitroxoline in the C3H/He mice bladder cancer subcutaneous model resulted in significant inhibition of tumor growth. Moreover, the percentage of myeloid-derived suppressor cells (MDSC) in peripheral blood cells significantly decreased after treatment of nitroxoline. Taken together, our results suggested that nitroxoline may be used as a potential drug for bladder cancer

    Repurposing of posaconazole as a hedgehog/SMO signaling inhibitor for embryonal rhabdomyosarcoma therapy

    Get PDF
    Posaconazole (POS) is a novel antifungal agent, which has been repurposed as an anti-tumor drug for its potential inhibition of Hedgehog signaling pathway. Hedgehog pathway is reported to be abnormally activated in embryonal rhabdomyosarcoma (ERMS), this study aimed to reveal whether POS could inhibit Hedgehog signaling pathway in ERMS. Following POS treatment, XTT viability assay was used to determine the cell proliferation of ERMS cell lines. Protein changes related to Hedgehog signaling, cell cycle and autophagy were detected by Western blot. The cell cycle distribution was analyzed by flow cytometry. Moreover, a subcutaneous tumor mouse model of ERMS was established to assess the anti-tumor effect of POS. POS was found to inhibit tumor progression by inducing G0/G1 arrest and autophagy of RD, RMS-YM, and KYM-1 cells dose-dependently. Western blot demonstrated that POS downregulated the expressions of SMO, Gli1, c-Myc, CDK4, and CDK6, while upregulated the expressions of autophagy-related proteins. Immunofluorescence microscopy revealed a significant increase of LC3B puncta in POS-treated ERMS cells. Furthermore, POS treatment led to a significant inhibition of tumor growth in mice bearing ERMS. Our findings could provide a theoretical basis and have important clinical implications in developing POS as a promising agent against ERMS by targeting Hedgehog pathway

    Dkk3/REIC Deficiency Impairs Spermiation, Sperm Fibrous Sheath Integrity and the Sperm Motility of Mice

    Get PDF
    The role of Dickkopf-3 (Dkk3)/REIC (The Reduced Expression in Immortalized Cells), a Wnt-signaling inhibitor, in male reproductive physiology remains unknown thus far. To explore the functional details of Dkk3/REIC in the male reproductive process, we studied the Dkk3/REIC knock-out (KO) mouse model. By examining testicular sections and investigating the sperm characteristics (count, vitality and motility) and ultrastructure, we compared the reproductive features between Dkk3/REIC-KO and wild-type (WT) male mice. To further explore the underlying molecular mechanism, we performed RNA sequencing (RNA-seq) analysis of testicular tissues. Our results showed that spermiation failure existed in seminiferous tubules of Dkk3/REIC-KO mice, and sperm from Dkk3/REIC-KO mice exhibited inferior motility (44.09 +/- 8.12% vs. 23.26 +/- 10.02%, p 0.05) nor the difference in the sperm vitality rate (72.83 +/- 1.55% vs. 72.50 +/- 0.71%, p > 0.05) were statistically significant. The RNA-seq and GO (Gene Oncology) enrichment results indicated that the differential genes were significantly enriched in the GO terms of cytoskeleton function, cAMP signaling and calcium ion binding. Collectively, our research demonstrates that Dkk3/REIC is involved in the process of spermiation, fibrous sheath integrity maintenance and sperm motility of mice

    DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Charting the interactions among genes and among their protein products is essential for understanding biological systems. A flood of interaction data is emerging from high throughput technologies, computational approaches, and literature mining methods. Quick and efficient access to this data has become a critical issue for biologists. Several excellent multi-organism databases for gene and protein interactions are available, yet most of these have understandable difficulty maintaining comprehensive information for any one organism. No single database, for example, includes all available interactions, integrated gene expression data, and comprehensive and searchable gene information for the important model organism, <it>Drosophila melanogaster</it>.</p> <p>Description</p> <p>DroID, the <it>Drosophila </it>Interactions Database, is a comprehensive interactions database designed specifically for <it>Drosophila</it>. DroID houses published physical protein interactions, genetic interactions, and computationally predicted interactions, including interologs based on data for other model organisms and humans. All interactions are annotated with original experimental data and source information. DroID can be searched and filtered based on interaction information or a comprehensive set of gene attributes from Flybase. DroID also contains gene expression and expression correlation data that can be searched and used to filter datasets, for example, to focus a study on sub-networks of co-expressed genes. To address the inherent noise in interaction data, DroID employs an updatable confidence scoring system that assigns a score to each physical interaction based on the likelihood that it represents a biologically significant link.</p> <p>Conclusion</p> <p>DroID is the most comprehensive interactions database available for <it>Drosophila</it>. To facilitate downstream analyses, interactions are annotated with original experimental information, gene expression data, and confidence scores. All data in DroID are freely available and can be searched, explored, and downloaded through three different interfaces, including a text based web site, a Java applet with dynamic graphing capabilities (IM Browser), and a Cytoscape plug-in. DroID is available at <url>http://www.droidb.org</url>.</p
    • …
    corecore