130,251 research outputs found

    Mössbauer diffractometry on polycrystalline (57)Fe3Al

    Get PDF
    A Mossbauer powder diffractometer was used to measure diffraction patterns from polycrystalline foils of (Fe3Al)-Fe-57. The intensities of Bragg diffractions were measured as a function of the energy of the incident photon. The bee fundamental diffractions showed large changes in intensity as the incident energy was tuned through the nuclear resonances. These variations of diffraction intensity with incident energy were calculated with reasonable success using a kinematical theory of diffraction that included effects of coherent interference between x-ray Rayleigh scattering and, more importantly for these samples, Mossbauer scattering from nuclei having different hyperfine magnetic fields

    An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks

    Get PDF
    Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs

    Phase transitions in exactly solvable decorated model of localized Ising spins and itinerant electrons

    Full text link
    A hybrid lattice-statistical model of doubly decorated two-dimensional lattices, which have localized Ising spins at its nodal sites and itinerant electrons delocalized over decorating sites, is exactly solved with the help of a generalized decoration-iteration transformation. Under the assumption of a quarter filling of each couple of the decorating sites, the ground state constitutes either spontaneously long-range ordered ferromagnetic or ferrimagnetic phase in dependence on whether the ferromagnetic or antiferromagnetic interaction between the localized Ising spins and itinerant electrons is considered. The critical temperature of the spontaneously long-range ordered phases monotonically increases upon strengthening the ratio between the kinetic term and the Ising-type exchange interaction.Comment: 4 pages, 3 figures, presented at International Conference on Magnetism 2009 to be held on July 26-31 in Karlsruhe, Germany. submitted to J. Phys.: Conf. Se
    corecore