2,904 research outputs found

    Reducing Side Effects of Hiding Sensitive Itemsets in Privacy Preserving Data Mining

    Get PDF
    Data mining is traditionally adopted to retrieve and analyze knowledge from large amounts of data. Private or confidential data may be sanitized or suppressed before it is shared or published in public. Privacy preserving data mining (PPDM) has thus become an important issue in recent years. The most general way of PPDM is to sanitize the database to hide the sensitive information. In this paper, a novel hiding-missing-artificial utility (HMAU) algorithm is proposed to hide sensitive itemsets through transaction deletion. The transaction with the maximal ratio of sensitive to nonsensitive one is thus selected to be entirely deleted. Three side effects of hiding failures, missing itemsets, and artificial itemsets are considered to evaluate whether the transactions are required to be deleted for hiding sensitive itemsets. Three weights are also assigned as the importance to three factors, which can be set according to the requirement of users. Experiments are then conducted to show the performance of the proposed algorithm in execution time, number of deleted transactions, and number of side effects

    Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System

    Get PDF
    The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively

    A Review of Western and Traditional Chinese Medical Approaches to Managing Nonalcoholic Fatty Liver Disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a disease of attention because of increase in prevalence from 20% to 41%. The clinical and pathological conditions in patients with NAFLD range from steatosis alone to nonalcoholic steatohepatitis (NASH) with or without fibrosis to hepatic cancer. In the United States, NAFLD was the second-leading indication for liver transplant between 2004 and 2013. Although imaging studies such as magnetic resonance elastography and the use of diagnostic panels and scoring systems can provide a fairly accurate diagnosis of NAFLD, there are few treatment options for patients with mild to moderate disease other than lifestyle modification. Many of the currently used medical treatments have been shown to cause severe side effects and some have been shown to be associated with increased risk for certain types of cancer. In recent years, a number of traditional Chinese herbal treatments have been examined for their potential uses as treatment for NAFLD. In this review, we provide a general overview of NAFLD and a survey of Western pharmacologic drugs currently used to treat the disease as well as the results of recent studies on the effectiveness of traditional Chinese herbal remedies for managing nonalcoholic fatty liver disease

    TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder

    Get PDF
    AbstractInflammation and abnormalities in Toll-like receptor (TLR) expression and activation have been linked to major depressive disorder (MDD). However, negative regulators of TLR pathways have not been previously investigated in this context. Here, we sought to investigate the association of depression severity, measured by the 17-item Hamilton Depression Rating Scale (HAMD-17), with mRNA expression levels of negative regulators of the TLR pathway, including SOCS1, TOLLIP, SIGIRR, MyD88s, NOD2 and TNFAIP3, in peripheral blood mononuclear cells (PBMCs) from 100 patients with MDD and 53 healthy controls, before and after treatment with antidepressants. Positive regulators of the TLR4 pathway, including Pellino 1, TRAF6 and IRAK1, were also investigated. Among all patients, MyD88s, and TNFAIP3 mRNAs were expressed at lower levels in PBMCs from patients with MDD. Multiple linear regression analyses revealed that TNFAIP3 mRNA expression before treatment was inversely correlated with severity of depression and effectively predicted improvement in HAMD-17 scores. Among 79 treatment-completers, only TNFAIP3 mRNA was significantly increased by treatment with antidepressants for 4 weeks. Treatment of human monocytes (THP-1) and mouse microglia (SIM-A9) cell lines with fluoxetine significantly increased TNFAIP3 mRNA expression and suppressed IL-6 levels. The suppressive effect of fluoxetine on IL-6 was attenuated by knockdown of TNFAIP3 expression. These findings suggest that both dysfunction of the negative regulatory system in patients with MDD and antidepressant treatment exert anti-inflammatory effects, at least in part through increased expression of the TNFAIP3 gene. They also indicate that modulating expression of the TNFAIP3 gene to rebalance TLR-mediated inflammatory signaling may be potential therapeutic strategy for treating MDD

    Association between interleukin-6 receptor gene variations and atherosclerotic lipid profiles among young adolescents in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To analyze the potential genetic associations between four polymorphisms of interleukin-6 receptor (IL-6R) gene and atherosclerotic lipid profiles among young adolescents in Taiwan.</p> <p>Methods</p> <p>Using data from the Taipei Children Heart Study-II - a cross-sectional survey in 2003. After multi-stage sampling, we selected 418 boys and 441 girls with an average age of 13.1 years. We genotyped the subjects for four IL-6R gene polymorphisms (rs4845617 G/A, rs4845623 A/G, rs8192284 A/C, and rs2229238 C/T) using a TaqMan 5' nuclease assay. Lipid profiles, including total cholesterol (CHOL), triglycerides (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) were measured using standard methods. We also calculated CHOL/HDL-C ratio, LDL-C/HDL-C ratio, and TG/HDL-C ratio as atherosclerotic indexes.</p> <p>Results</p> <p>IL-6R rs8192284 A/C and rs2229238 C/T variants showed strong associations with high TG (additive model, OR = 1.58, 95%CI: 1.05-2.37; OR = 1.55, 95%CI: 1.04-2.29, respectively), low HDL-C (additive model, OR = 1.57, 95%CI: 1.03-2.39; OR = 1.68, 95%CI: 1.12-2.52, respectively), and high CHOL/HDL-C (additive model, OR = 1.68, 95%CI: 1.08-2.61, OR = 1.82, 95%CI: 1.18-2.79, respectively) in girls. We inferred five common haplotypes using rs4845617 G/A, rs4845623 A/G, and rs2229238 C/T (GAC, GAT, GGC, AAC, and AAT). In girls, the AAT haplotype was associated with a significant risk of high TG, low HDL-C, high CHOL/HDL-C, and abnormal lipid levels (high TG or low HDL-C) when compared with the GAC haplotype (OR range = 3.08-4.40, all p < 0.05).</p> <p>Conclusion</p> <p>The IL-6R rs8192284 A/C and rs2229238 C/T variants are associated with dyslipidemia in girls, but not in boys. The AAT haplotype of the IL-6R gene (rs4845617 G/A, rs4845623 A/G, and rs2229238 C/T) may play an important role in the pathogenesis of dyslipidemia and atherosclerosis in girls.</p

    Assessing Computational Amino Acid β-Turn Propensities with a Phage-Displayed Combinatorial Library and Directed Evolution

    Get PDF
    SummaryStructure propensities of amino acids are important determinants in guiding proteins' local and global structure formation. We constructed a phage display library—a hexa-HIS tag upstream of a CXXC (X stands for any of the 20 natural amino acids) motif appending N-terminal to the minor capsid protein pIII of M13KE filamentous phage—and developed a novel directed-evolution procedure to select for amino acid sequences forming increasingly stable β-turns in the disulfide-bridged CXXC motif. The sequences that emerged from the directed-evolution cycles were in good agreement with type II β-turn propensities derived from surveys of known protein structures, in particular, Pro-Gly forming a type II β-turn. The agreement strongly supported the notion that β-turn formation plays an active role in initiating local structure folding in proteins
    • …
    corecore