76,176 research outputs found
Provenance analysis for instagram photos
As a feasible device fingerprint, sensor pattern noise (SPN) has been proven to be effective in the provenance analysis of digital images. However, with the rise of social media, millions of images are being uploaded to and shared through social media sites every day. An image downloaded from social networks may have gone through a series of unknown image manipulations. Consequently, the trustworthiness of SPN has been challenged in the provenance analysis of the images downloaded from social media platforms. In this paper, we intend to investigate the effects of the pre-defined Instagram images filters on the SPN-based image provenance analysis. We identify two groups of filters that affect the SPN in quite different ways, with Group I consisting of the filters that severely attenuate the SPN and Group II consisting of the filters that well preserve the SPN in the images. We further propose a CNN-based classifier to perform filter-oriented image categorization, aiming to exclude the images manipulated by the filters in Group I and thus improve the reliability of the SPN-based provenance analysis. The results on about 20, 000 images and 18 filters are very promising, with an accuracy higher than 96% in differentiating the filters in Group I and Group II
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe
There is increasing evidence that conventional cold dark matter (CDM) models
lead to conflicts between observations and numerical simulations of dark matter
halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is
strongly self-interacting, then the conflicts disappear. However, the
assumption of strong self-interaction would rule out the favored candidates for
CDM, namely weakly interacting massive particles (WIMPs), such as the
neutralino. In this paper we propose a mechanism of non-thermal production of
WIMPs and study its implications on the power spectrum. We find that the
non-vanishing velocity of the WIMPs suppresses the power spectrum on small
scales compared to what it obtained in the conventional CDM model. Our results
show that, in this context, WIMPs as candidates for dark matter can work well
both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
Universal Quantum Degeneracy Point for Superconducting Qubits
The quantum degeneracy point approach [D. Vion et al., Science 296, 886
(2002)] effectively protects superconducting qubits from low-frequency noise
that couples with the qubits as transverse noise. However, low-frequency noise
in superconducting qubits can originate from various mechanisms and can couple
with the qubits either as transverse or as longitudinal noise. Here, we present
a quantum circuit containing a universal quantum degeneracy point that protects
an encoded qubit from arbitrary low-frequency noise. We further show that
universal quantum logic gates can be performed on the encoded qubit with high
gate fidelity. The proposed scheme is robust against small parameter spreads
due to fabrication errors in the superconducting qubits.Comment: 7 pages, 4 figure
TimeMachine: Timeline Generation for Knowledge-Base Entities
We present a method called TIMEMACHINE to generate a timeline of events and
relations for entities in a knowledge base. For example for an actor, such a
timeline should show the most important professional and personal milestones
and relationships such as works, awards, collaborations, and family
relationships. We develop three orthogonal timeline quality criteria that an
ideal timeline should satisfy: (1) it shows events that are relevant to the
entity; (2) it shows events that are temporally diverse, so they distribute
along the time axis, avoiding visual crowding and allowing for easy user
interaction, such as zooming in and out; and (3) it shows events that are
content diverse, so they contain many different types of events (e.g., for an
actor, it should show movies and marriages and awards, not just movies). We
present an algorithm to generate such timelines for a given time period and
screen size, based on submodular optimization and web-co-occurrence statistics
with provable performance guarantees. A series of user studies using Mechanical
Turk shows that all three quality criteria are crucial to produce quality
timelines and that our algorithm significantly outperforms various baseline and
state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and
other info available at http://cs.stanford.edu/~althoff/timemachine
Design and finite element mode analysis of noncircular gear
The noncircular gear transmission is an important branch of the gear transmission, it is characterized by its compact structure, good dynamic equilibration and other advantages, and can be used in the automobile, engineering machine, ship, machine tool, aviation and spaceflight field etc. Studying on the dynamics feature of noncircular gear transmission can improve the ability to carry loads of, reduce the vibration and noise of, increase the life of the noncircular gear transmission machine, provides guidance for the design of the noncircular gear, and has significant theories and practical meanings. In this paper, the gear transmission technique is used to studied the design method of the noncircular gear, which contains distribution of teeth on the pitch curve, designs of the tooth tip curve and the tooth root curve, design of the tooth profile curve, the gear system dynamics principle is introduced to establish dynamics model for the noncircular gear; basic theory of finite element and mode analysis method are applied, finite element model for the noncircular gear is established, natural vibration characteristic of the noncircular gear is studied. And the oval gear is taken as an example, the mathematics software MathCAD, the 3D modeling software UG and the finite element software ABAQUS are used to realize precise 3D model of the oval gear. The finite element method is used, the natural vibration characteristic of the oval gear is studied, the main vibration types and natural frequencies of the oval gear and that of the equivalent cylindrical gears are analyzed and compared, the conclusions received reflect the dynamics performance of the oval gear, and solid foundation is laid for dynamics research and engineering application of the oval gear transmission
Twisted and Nontwisted Bifurcations Induced by Diffusion
We discuss a diffusively perturbed predator-prey system. Freedman and
Wolkowicz showed that the corresponding ODE can have a periodic solution that
bifurcates from a homoclinic loop. When the diffusion coefficients are large,
this solution represents a stable, spatially homogeneous time-periodic solution
of the PDE. We show that when the diffusion coefficients become small, the
spatially homogeneous periodic solution becomes unstable and bifurcates into
spatially nonhomogeneous periodic solutions.
The nature of the bifurcation is determined by the twistedness of an
equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients
decrease. In the nontwisted case two spatially nonhomogeneous simple periodic
solutions of equal period are generated, while in the twisted case a unique
spatially nonhomogeneous double periodic solution is generated through
period-doubling.
Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic
bifurcations; periodic solutions.Comment: 42 pages in a tar.gz file. Use ``latex2e twisted.tex'' on the tex
files. Hard copy of figures available on request from
[email protected]
Effect of inter-subsystem couplings on the evolution of composite systems
The effect of inter-subsystem coupling on the adiabaticity of composite
systems and that of its subsystems is investigated. Similar to the adiabatic
evolution defined for pure states, non-transitional evolution for mixed states
is introduced; conditions for the non-transitional evolution are derived and
discussed. An example that describes two coupled qubits is presented to detail
the general presentation. The effects due to non-adiabatic evolution on the
geometric phase are also presented and discussed.Comment: 5 pages, 1 figur
- …
