1,156 research outputs found

    Efficient Trajectory Optimization for Robot Motion Planning

    Full text link
    Motion planning for multi-jointed robots is challenging. Due to the inherent complexity of the problem, most existing works decompose motion planning as easier subproblems. However, because of the inconsistent performance metrics, only sub-optimal solution can be found by decomposition based approaches. This paper presents an optimal control based approach to address the path planning and trajectory planning subproblems simultaneously. Unlike similar works which either ignore robot dynamics or require long computation time, an efficient numerical method for trajectory optimization is presented in this paper for motion planning involving complicated robot dynamics. The efficiency and effectiveness of the proposed approach is shown by numerical results. Experimental results are used to show the feasibility of the presented planning algorithm.Comment: submitted to ICARCV 2018. Video: https://youtu.be/EZmLXtO3C2

    Quantum entanglement and entropy in particle creation

    Full text link
    We investigate the basic theoretical issues in the quantum entanglement of particle pairs created from the vacuum in a time-dependent background field or spacetime. Similar to entropy generation from these processes which depends on the choice of physical variables and how certain information is coarse-grained, entanglement dynamics hinges on the choice of measurable quantities and how the two parties are selected as well as the background dynamics of the field or spacetime. We discuss the conditions of separability of quantum states in particle creation processes and point out the differences in how the von Neumann entropy is used as a measure of entropy generation versus for entanglement dynamics. We show by an explicit construction that adoption of a different set of physical variables yields a different entanglement entropy. As an application of these theoretical considerations we show how the particle number and the quantum phase enter the entanglement dynamics in cosmological particle production.Comment: 14 pages, no figure; Typos corrected

    A Learning Framework for Robust Bin Picking by Customized Grippers

    Full text link
    Customized grippers have specifically designed fingers to increase the contact area with the workpieces and improve the grasp robustness. However, grasp planning for customized grippers is challenging due to the object variations, surface contacts and structural constraints of the grippers. In this paper, we propose a learning framework to plan robust grasps for customized grippers in real-time. The learning framework contains a low-level optimization-based planner to search for optimal grasps locally under object shape variations, and a high-level learning-based explorer to learn the grasp exploration based on previous grasp experience. The optimization-based planner uses an iterative surface fitting (ISF) to simultaneously search for optimal gripper transformation and finger displacement by minimizing the surface fitting error. The high-level learning-based explorer trains a region-based convolutional neural network (R-CNN) to propose good optimization regions, which avoids ISF getting stuck in bad local optima and improves the collision avoidance performance. The proposed learning framework with RCNN-ISF is able to consider the structural constraints of the gripper, learn grasp exploration strategy from previous experience, and plan optimal grasps in clutter environment in real-time. The effectiveness of the algorithm is verified by experiments.Comment: Submitted to 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019). arXiv admin note: text overlap with arXiv:1803.1129

    CMB Constraints on the Holographic Dark Energy Model

    Full text link
    We calculate the angular scale of the acoustic oscillation from the BOOMERANG and WMAP data on the cosmic microwave background (CMB) to constrain the holographic dark energy model recently proposed by Li. We find that only the phantom-like holographic dark energy survives the cosmological tests. This is, however, inconsistent with the positive energy condition implicitly assumed in constructing Li's model. Therefore the model is marginally ruled out by the present CMB data. As a supplementary check, we also calculate the suppression of the matter density fluctuation due to the late time integrated Sach-Wolfe effect by the holographic dark energy, the result is within the tolerance of the cosmic variance. Some aspect about the saturation of the cosmic holographic bound is also discussed.Comment: 13 pages, 4 figures;v2 point out the conflict between energy condition and cmb constraint;v3 add references, redo ISW par

    Refined Characterization of Lattice Chern Insulators by Bulk Entanglement Spectrum

    Full text link
    We have studied extensively the band crossing patterns of the bulk entanglement spectrum (BES) for various lattice Chern insulators. We find that only partitions with dual symmetry can have either stable nodal-lines or nodal-points in the BES when the system is in the topological phase of a nonzero Chern number. By deforming the Hamiltonian to lift the accidental symmetry, one can see that only nodal points are robust. They thus should bear certain topological characteristics of the BES. By studying the band crossing patterns in details we conclude that the topological characteristics of the BES are inherited from the topological order of the underlying Chern insulators and the former can have more refined topological structures. We then propose the conjecture that the sum of the vorticities in the BES in a properly chosen reduced Brillouin zone equals the Chern number of the underlying Chern insulator. This relation is beyond the usual classification scheme of topological insulators/superconductors.Comment: 19 pages, 32 figures; v3: revised with various improvements, version to appear in PR

    Entanglement Dynamics of Detectors in an Einstein Cylinder

    Full text link
    We investigate how nontrivial topology affects the entanglement dynamics between a detector and a quantum field and between two detectors mediated by a quantum field. Nontrivial topology refers to both that of the base space and that of the bundle. Using a derivative-coupling Unruh-DeWitt-like detector model interacting with a quantum scalar field in an Einstein cylinder S1 (space) x R1 (time), we see the beating behaviors in the dynamics of the detector-field entanglement and the detector-detector entanglement, which distinguish from the results in the non-compact (1+1) dimensional Minkowski space. The beat patterns of entanglement dynamics in a normal and a twisted field with the same parameter values are different because of the difference in the spectrum of the field modes. In terms of the kinetic momentum of the detectors, we find that the contribution by the zero mode in a normal field to entanglement dynamics has no qualitative difference from those by the nonzero modes.Comment: 32 pages, 13 figures. Early-time analysis and comparison with perturbative results added; Figs. 6-9, 11-12 update

    Electronic and optical properties of graphene nanoribbons in external fields

    Full text link
    A review work is done for electronic and optical properties of graphene nanoribbons in magnetic, electric, composite, and modulated fields. Effects due to the lateral confinement, curvature, stacking, non-uniform subsystems and hybrid structures are taken into account. The special electronic properties, induced by complex competitions between external fields and geometric structures, include many one-dimensional parabolic subbands, standing waves, peculiar edge-localized states, width- and field-dependent energy gaps, magnetic-quantized quasi-Landau levels, curvature-induced oscillating Landau subbands, crossings and anti-crossings of quasi-Landau levels, coexistence and combination of energy spectra in layered structures, and various peak structures in the density of states. There exist diverse absorption spectra and different selection rules, covering edge-dependent selection rules, magneto-optical selection rule, splitting of the Landau absorption peaks, intragroup and intergroup Landau transitions, as well as coexistence of monolayer-like and bilayer-like Landau absorption spectra. Detailed comparisons are made between the theoretical calculations and experimental measurements. The predicted results, the parabolic subbands, edge-localized states, gap opening and modulation, and spatial distribution of Landau subbands, have been verified by various experimental measurements

    SERoCS: Safe and Efficient Robot Collaborative Systems for Next Generation Intelligent Industrial Co-Robots

    Full text link
    Human-robot collaborations have been recognized as an essential component for future factories. It remains challenging to properly design the behavior of those co-robots. Those robots operate in dynamic uncertain environment with limited computation capacity. The design objective is to maximize their task efficiency while guaranteeing safety. This paper discusses a set of design principles of a safe and efficient robot collaboration system (SERoCS) for the next generation co-robots, which consists of robust cognition algorithms for environment monitoring, efficient task planning algorithms for reference generations, and safe motion planning and control algorithms for safe human-robot interactions. The proposed SERoCS will address the design challenges and significantly expand the skill sets of the co-robots to allow them to work safely and efficiently with their human counterparts. The development of SERoCS will create a significant advancement toward adoption of co-robots in various industries. The experiments validate the effectiveness of SERoCS.Comment: 19 page

    Real-Time Robust Finger Gaits Planning under Object Shape and Dynamics Uncertainties

    Full text link
    Dexterous manipulation has broad applications in assembly lines, warehouses and agriculture. To perform large-scale manipulation tasks for various objects, a multi-fingered robotic hand sometimes has to sequentially adjust its grasping gestures, i.e. the finger gaits, to address the workspace limits and guarantee the object stability. However, realizing finger gaits planning in dexterous manipulation is challenging due to the complicated grasp quality metrics, uncertainties on object shapes and dynamics (mass and moment of inertia), and unexpected slippage under uncertain contact dynamics. In this paper, a dual-stage optimization based planner is proposed to handle these challenges. In the first stage, a velocity-level finger gaits planner is introduced by combining object grasp quality with hand manipulability. The proposed finger gaits planner is computationally efficient and realizes finger gaiting without 3D model of the object. In the second stage, a robust manipulation controller using robust control and force optimization is proposed to address object dynamics uncertainties and external disturbances. The dual-stage planner is able to guarantee stability under unexpected slippage caused by uncertain contact dynamics. Moreover, it does not require velocity measurement or expensive 3D/6D tactile sensors. The proposed dual-stage optimization based planner is verified by simulations on Mujoco.Comment: Accepted by IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 201

    Landau quantization in buckled monolayer GaAs

    Full text link
    Magneto-electronic properties of buckled monolayer GaAs is studied by the developed generalized tight-binding model, considering the buckled structure, multi-orbital chemical bondings, spin-orbit coupling, electric field, and magnetic field simultaneously. Three group of spin-polarized Landau levels (LLs) near the Fermi level are induced by the magnetic quantization, whose initial energies, LL degeneracy, energy spacings, magnetic-field-dependence, and spin polarization are investigated. The Landau state probabilities describing the oscillation patterns, localization centers, and node regularities of the dominated/minor orbitals are analyzed, and their energy-dependent variations are discussed. The given density of states directly reflects the main features of the LL energy spectra in the structure, height, number, and frequency of the spin-polarized LL peaks. The electric field causes the monotonous/nonmonotonous LL energy dispersions, LL crossing, gap modulation, phase transition and spin splitting enhancement. The complex gap modulations and phase transitions based on the competition between magnetic and electric fields are explored in detail by the phase diagram. The field-controlled gap modulations and phase transitions are helpful in designing the top-gated and phase-change electronic devices. These predicted magneto-electronic properties could be verified by scanning tunneling spectroscopy measurements
    • …
    corecore