5 research outputs found

    Gut microbial diversity is associated with lower arterial stiffness in women

    Get PDF
    © The Author(s)2018 All rights reserved. Aims The gut microbiome influences metabolic syndrome (MetS) and inflammation and is therapeutically modifiable. Arterial stiffness is poorly correlated with most traditional risk factors. Our aim was to examine whether gut microbial composition is associated with arterial stiffness.Methods We assessed the correlation between carotid-femoral pulse wave velocity (PWV), a measure of arterial stiffness, and and results gut microbiome composition in 617 middle-aged women from the TwinsUK cohort with concurrent serum metabolomics data. Pulse wave velocity was negatively correlated with gut microbiome alpha diversity (Shannon index, Beta(SE)= -0.25(0.07), P = 1 10 -4 ) after adjustment for covariates. We identified seven operational taxonomic units associated with PWV after adjusting for covariates and multiple testing—two belonging to the Ruminococcaceae family. Associations between microbe abundances, microbe diversity, and PWV remained significant after adjustment for levels of gut-derived metabolites (indolepropionate, trimethylamine oxide, and phenylacetylglutamine). We linearly combined the PWV-associated gut microbiome-derived variables and found that microbiome factors explained 8.3% (95% confidence interval 4.3–12.4%) of the variance in PWV. A formal mediation analysis revealed that only a small proportion (5.51%) of the total effect of the gut microbiome on PWV was mediated by insulin resistance and visceral fat, c-reactive protein, and cardiovascular risk factors after adjusting for age, body mass index, and mean arterial pressure. Conclusions Gut microbiome diversity is inversely associated with arterial stiffness in women. The effect of gut microbiome composition on PWV is only minimally mediated by MetS. This first human observation linking the gut microbiome to arterial stiffness suggests that targeting the microbiome may be a way to treat arterial ageing

    Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs

    No full text
    Background: The aim of this study was to evaluate the efficacy of a deep learning system in pterygium grading and recurrence prediction. Methods: This was a single center, retrospective study. Slit-lamp photographs, from patients with or without pterygium, were collected to develop an algorithm. Demographic data, including age, gender, laterality, grading, and pterygium area, recurrence, and surgical methods were recorded. Complex ocular surface diseases and pseudopterygium were excluded. Performance of the algorithm was evaluated by sensitivity, specificity, F1 score, accuracy, and area under the receiver operating characteristic curve. Confusion matrices and heatmaps were created to help explain the results. Results: A total of 237 eyes were enrolled, of which 176 eyes had pterygium and 61 were non-pterygium eyes. The training set and testing set were comprised of 189 and 48 photographs, respectively. In pterygium grading, sensitivity, specificity, F1 score, and accuracy were 80% to 91.67%, 91.67% to 100%, 81.82% to 94.34%, and 86.67% to 91.67%, respectively. In the prediction model, our results showed sensitivity, specificity, positive predictive value, and negative predictive values were 66.67%, 81.82%, 33.33%, and 94.74%, respectively. Conclusions: Deep learning systems can be useful in pterygium grading based on slit lamp photographs. When clinical parameters involved in the prediction of pterygium recurrence were included, the algorithm showed higher specificity and negative predictive value in prediction
    corecore