2,717 research outputs found

    Probing Transverse Momentum Broadening via Dihadron and Hadron-jet Angular Correlations in Relativistic Heavy-ion Collisions

    Full text link
    Dijet, dihadron, hadron-jet angular correlations have been reckoned as important probes of the transverse momentum broadening effects in relativistic nuclear collisions. When a pair of high-energy jets created in hard collisions traverse the quark-gluon plasma produced in heavy-ion collisions, they become de-correlated due to the vacuum soft gluon radiation associated with the Sudakov logarithms and the medium-induced transverse momentum broadening. For the first time, we employ the systematical resummation formalism and establish a baseline calculation to describe the dihadron and hadron-jet angular correlation data in pppp and peripheral AAAA collisions where the medium effect is negligible. We demonstrate that the medium-induced broadening ⟨p⊥2⟩\langle p_\perp^2\rangle and the so-called jet quenching parameter q^\hat q can be extracted from the angular de-correlations observed in AAAA collisions. A global χ2\chi^2 analysis of dihadron and hadron-jet angular correlation data renders the best fit ⟨p⊥2⟩∼13 GeV2\langle p_\perp^2 \rangle \sim 13~\textrm{GeV}^2 for a quark jet at RHIC top energy. Further experimental and theoretical efforts along the direction of this work shall significantly advance the quantitative understanding of transverse momentum broadening and help us acquire unprecedented knowledge of jet quenching parameter in relativistic heavy-ion collisions.Comment: 6 pages, 3 figure

    On the Over-Memorization During Natural, Robust and Catastrophic Overfitting

    Full text link
    Overfitting negatively impacts the generalization ability of deep neural networks (DNNs) in both natural and adversarial training. Existing methods struggle to consistently address different types of overfitting, typically designing strategies that focus separately on either natural or adversarial patterns. In this work, we adopt a unified perspective by solely focusing on natural patterns to explore different types of overfitting. Specifically, we examine the memorization effect in DNNs and reveal a shared behaviour termed over-memorization, which impairs their generalization capacity. This behaviour manifests as DNNs suddenly becoming high-confidence in predicting certain training patterns and retaining a persistent memory for them. Furthermore, when DNNs over-memorize an adversarial pattern, they tend to simultaneously exhibit high-confidence prediction for the corresponding natural pattern. These findings motivate us to holistically mitigate different types of overfitting by hindering the DNNs from over-memorization natural patterns. To this end, we propose a general framework, Distraction Over-Memorization (DOM), which explicitly prevents over-memorization by either removing or augmenting the high-confidence natural patterns. Extensive experiments demonstrate the effectiveness of our proposed method in mitigating overfitting across various training paradigms

    Landau-Zener-St\"{u}ckelberg Interference of Microwave Dressed States of a Superconducting Phase Qubit

    Full text link
    We present the first observation of Landau-Zener-St\"{u}ckelberg (LZS) interference of the dressed states arising from an artificial atom, a superconducting phase qubit, interacting with a microwave field. The dependence of LZS interference fringes on various external parameters and the initial state of the qubit agrees quantitatively very well with the theoretical prediction. Such LZS interferometry between the dressed states enables us to control the quantum states of a tetrapartite solid-state system with ease, demonstrating the feasibility of implementing efficient multipartite quantum logic gates with this unique approach.Comment: 6 pages, 3 figures To appear in Physical Review B(R

    2-(4-tert-Butyl­phen­yl)-5-{3,4-dibutoxy-5-[5-(4-tert-butyl­phen­yl)-1,3,4-oxadiazol-2-yl]-2-thienyl}-1,3,4-oxadiazole

    Get PDF
    In the title compound, C36H44N4O4S, the dihedral angles between the central thio­phene ring and the pendent oxadiazole rings are 12.7 (2) and 13.7 (2)°, and the dihedral angles between the oxadiazole rings and their adjacent benzene rings are 6.1 (2) and 17.5 (2)°. An intra­molecular C—H⋯O inter­action may help to establish the conformation
    • …
    corecore