108,558 research outputs found
Path integral for a relativistic Aharonov-Bohm-Coulomb system
The path integral for the relativistic spinless Aharonov-Bohm-Coulomb system
is solved, and the energy spectra are extracted from the resulting amplitude.Comment: 6 pages, Revte
Green's function for the Relativistic Coulomb System via Sum Over Perturbation Series
We evaluate the Green's function of the D-dimensional relativistic Coulomb
system via sum over perturbation series which is obtained by expanding the
exponential containing the potential term in the path integral
into a power series. The energy spectra and wave functions are extracted from
the resulting amplitude.Comment: 13 pages, ReVTeX, no figure
Recommended from our members
Effective video multicast over wireless internet
With the rapid growth of wireless networks and great success of Internet video, wireless video services are expected to be widely deployed in the near future. As different types of wireless networks are converging into all IP networks, i.e., the Internet, it is important to study video delivery over the wireless Internet. This paper proposes a novel end-system based adaptation protocol calledWireless Hybrid Adaptation Layered Multicast (WHALM) protocol for layered video multicast over wireless Internet. In WHALM the sender dynamically collects bandwidth distribution from the receivers and uses an optimal layer rate allocation mechanism to reduce the mismatches between the coarse-grained layer subscription levels and the heterogeneous and dynamic rate requirements from the receivers, thus maximizing the degree of satisfaction of all the receivers in a multicast session. Based on sampling theory and theory of probability, we reduce the required number of bandwidth feedbacks to a reasonable degree and use a scalable feedback mechanism to control the feedback process practically. WHALM is also tuned to perform well in wireless networks by integrating an end-to-end loss differentiation algorithm (LDA) to differentiate error losses from congestion losses at the receiver side. With a series of simulation experiments over NS platform, WHALM has been proved to be able to greatly improve the degree of satisfaction of all the receivers while avoiding congestion collapse on the wireless Internet
Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars
We propose that the observed misalignment between extra-solar planets and
their hot host stars can be explained by angular momentum transport within the
host star. Observations have shown that this misalignment is preferentially
around hot stars, which have convective cores and extended radiative envelopes.
This situation is amenable to substantial angular momentum transport by
internal gravity waves (IGW) generated at the convective-radiative interface.
Here we present numerical simulations of this process and show that IGW can
modulate the surface rotation of the star. With these two- dimensional
simulations we show that IGW could explain the retrograde orbits observed in
systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity
objects will await future three- dimensional simulations. We note that these
results also imply that individual massive stars should show temporal
variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe
There is increasing evidence that conventional cold dark matter (CDM) models
lead to conflicts between observations and numerical simulations of dark matter
halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is
strongly self-interacting, then the conflicts disappear. However, the
assumption of strong self-interaction would rule out the favored candidates for
CDM, namely weakly interacting massive particles (WIMPs), such as the
neutralino. In this paper we propose a mechanism of non-thermal production of
WIMPs and study its implications on the power spectrum. We find that the
non-vanishing velocity of the WIMPs suppresses the power spectrum on small
scales compared to what it obtained in the conventional CDM model. Our results
show that, in this context, WIMPs as candidates for dark matter can work well
both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
Entanglement in general two-mode continuous-variable states: local approach and mapping to a two-qubit system
We present a new approach to the analysis of entanglement in smooth bipartite
continuous-variable states. One or both parties perform projective filterings
via preliminary measurements to determine whether the system is located in some
region of space; we study the entanglement remaining after filtering. For small
regions, a two-mode system can be approximated by a pair of qubits and its
entanglement fully characterized, even for mixed states. Our approach may be
extended to any smooth bipartite pure state or two-mode mixed state, leading to
natural definitions of concurrence and negativity densities. For Gaussian
states both these quantities are constant throughout configuration space.Comment: 4 pages, RevTeX 4, one figure. Further modifications in response to
journal referees, correction to expression for negativit
- …