321 research outputs found

    Michel, J.P., Carpenter, M.S.N., Fairbridge, R.W., Dictionnaire des sciences de la Terre. Anglais/Français, Français/Anglais

    Get PDF
    La nouvelle Ă©dition du dictionnaire bilingue, anglais/français, des sciences de la Terre s’enrichit des compĂ©tences d’un nouvel auteur, M.S.N. Carpenter, traducteur professionnel en sciences de la Terre. Dans cette quatriĂšme version le lecteur trouvera prĂšs de 2500 nouvelles entrĂ©es mais Ă©galement des conseils et suggestions aux utilisateurs ainsi que des annexes (rĂ©pertoire d’abrĂ©viations scientifiques, conversion d’unitĂ©s, bibliographie) plus dĂ©veloppĂ©es. Les quelques pages de suggestions a..

    Tufs calcaires et travertins quaternaires : morphogenÚse, biocénoses, paléoclimats et implantations paléolithiques

    Get PDF
    La rĂ©union spĂ©cialisĂ©e de la SGF prĂ©sentĂ©e par l’Association Française pour l’Etude du Quaternaire – AFEQ – intitulĂ©e « Tufs calcaires et travertins quaternaires : morphogenĂšse, biocĂ©noses, palĂ©oclimats et implantations palĂ©olithiques » (« Quaternary calcareous tufa and travertine: morphogenesis, biocenosis, alaeoclimates and palaeolithic settlements ») s’est tenue Ă  laMaison de la GĂ©ologie, le 21 Novembre 2005. Cette journĂ©e Ă©tait organisĂ©e dans le cadre du projet ITEP (Signature climatique ..

    Tufs calcaires et travertins quaternaires : morphogenÚse, biocénoses, paléoclimats et implantations paléolithiques

    Get PDF
    Le prĂ©sent numĂ©ro constitue la deuxiĂšme partie des actes de la rĂ©union spĂ©cialisĂ©e de la SGF prĂ©sentĂ©e par l’Association Française pour l’Etude du Quaternaire –AFEQ–, intitulĂ©e « Tufs calcaires et travertins quaternaires : morphogenĂšse, biocĂ©noses, palĂ©oclimats et implantations palĂ©olithiques » (« Quaternary calcareous tufa and travertine : morphogenesis, biocenosis, palaeoclimates and palaeolithic settlements ») qui s’est tenue Ă  la Maison de la GĂ©ologie le 21 Novembre 2005. L’article sur la..

    Tufs calcaires et travertins quaternaires : morphogenÚse, biocénoses, paléoclimats et implantations paléolithiques

    Get PDF
    Le prĂ©sent numĂ©ro constitue la deuxiĂšme partie des actes de la rĂ©union spĂ©cialisĂ©e de la SGF prĂ©sentĂ©e par l’Association Française pour l’Etude du Quaternaire –AFEQ–, intitulĂ©e « Tufs calcaires et travertins quaternaires : morphogenĂšse, biocĂ©noses, palĂ©oclimats et implantations palĂ©olithiques » (« Quaternary calcareous tufa and travertine : morphogenesis, biocenosis, palaeoclimates and palaeolithic settlements ») qui s’est tenue Ă  la Maison de la GĂ©ologie le 21 Novembre 2005. L’article sur la..

    Avant-propos

    Get PDF
    Les Rencontres des Quaternaristes Marocains (RQM), organisĂ©es tous les deux ans, ont Ă©tĂ© crĂ©Ă©es Ă  l’initiative de l’Association Marocaine pour l’Etude du Quaternaire (AMEQ) en 2001 pour permettre aux chercheurs d’échanger leurs travaux sur la PrĂ©histoire et la GĂ©ologie du Quaternaire du Maroc. Fortes de leur succĂšs, ces rencontres ont rapidement gagnĂ© l’intĂ©rĂȘt des scientifiques et la thĂ©matique s’est Ă©largie au pourtour mĂ©diterranĂ©en dĂšs le quatriĂšme colloque. Deux numĂ©ros de la revue Quater..

    Avant-propos

    Get PDF
    En 2006 la communauté des quaternaristes français a formalisé sa participation au débat international sur la position du Quaternaire au sein de la charte stratigraphique en organisant le colloque Q5 autour de la thématique des limites et spécificités du Quaternaire. Les discussions qui eurent lieu lors de cette manifestation (Quaternaire, 18 (1), 2007) ont été sanctionnées par un vote approuvant à l'unanimité moins une voix la proposition soutenue par l'ISQS et l'INQUA (respectivement Interna..

    Avant-propos

    Get PDF
    Les Rencontres des Quaternaristes Marocains (RQM), organisĂ©es tous les deux ans, ont Ă©tĂ© crĂ©Ă©es Ă  l’initiative de l’Association Marocaine pour l’Etude du Quaternaire (AMEQ) en 2001 pour permettre aux chercheurs d’échanger leurs travaux sur la PrĂ©histoire et la GĂ©ologie du Quaternaire du Maroc. Fortes de leur succĂšs, ces rencontres ont rapidement gagnĂ© l’intĂ©rĂȘt des scientifiques et la thĂ©matique s’est Ă©largie au pourtour mĂ©diterranĂ©en dĂšs le quatriĂšme colloque. Deux numĂ©ros de la revue Quater..

    Q5 International Meeting. The Quaternary: boundaries and particularities.

    Get PDF
    The fifth international meeting organised by the French Quaternary community (Q5) “Quaternary: Boundaries and Particularities”, was held in Paris from 1st to 3d of February 2006. It was co­­‑organized by the French National Committee of INQUA and the French Association of Quaternary Studies (AFEQ) with the assistance of theMusĂ©um national d’Histoire Naturelle (MNHN) of Paris. The proceedings of the Q5 Colloquium will be fully published in the French journal Quaternaire, with several volumes p..

    Enregistrement des biocénoses de la premiÚre moitié de l'HolocÚne en contexte tufacé à Saint-Germain-le-Vasson (Calvados)

    Get PDF
    À Saint-Germain-le-Vasson (Calvados) l'accumulation d'un tuf de source sur 10 mĂštres d'Ă©paisseur reposant sur des dĂ©pĂŽts organiques, a permis une Ă©tude palĂ©oenvironnementale Ă  haute rĂ©solution de la premiĂšre moitiĂ© de l'HolocĂšne (9700 ± 90 Ă  4213 ± 77 BP) par l'analyse des cortĂšges malacologiques et polliniques rĂ©partis sur quatre sĂ©quences. La succession des malacocĂ©noses, particuliĂšrement riches et bien conservĂ©es, montre, aprĂšs une premiĂšre phase de prairie marĂ©cageuse, l'apparition puis le dĂ©veloppement rĂ©gulier du couvert forestier. Plusieurs espĂšces, repĂ©rĂ©es dans d'autres sĂ©ries tufacĂ©es d'Europe du Nord-Ouest pour leur intĂ©rĂȘt biostratigraphique et biogĂ©ographique, sont prĂ©sentes Ă  Saint-Germain-le-Vasson. La stratigraphie des tufs prĂ©sentant souvent une forte variabilitĂ© latĂ©rale, les occurrences de ces espĂšces repĂšres ont Ă©tĂ© utilisĂ©es pour proposer des corrĂ©lations entre les diffĂ©rents profils observĂ©s. Celles-ci ont amenĂ© Ă  identifier des hiatus au sommet et Ă  la base du dĂ©pĂŽt sur certains des carottages Ă©tudiĂ©s. L'analyse des cortĂšges polliniques dans l'argile organique, la tourbe et le dĂ©but de la formation tufacĂ©e qui forment la base du dĂ©pĂŽt, ainsi que les datations radiocarbone, ont permis de confirmer les discontinuitĂ©s mises en Ă©vidence par les donnĂ©es malacologiques, de conforter les corrĂ©lations Ă©tablies sur la base du dĂ©veloppement des successions malacologiques et de reconnaĂźtre un autre hiatus au dĂ©but de l'enregistrement sĂ©dimentaire.Results are presented of a detailed palaeoenvironmental study from a 10m thick tufa of early Holocene age (9700 ± 90 to 4213 ± 77 yr BP) at Saint-Germain-le-Vasson, Normandy. The work is based on malacological and palynological analyses from four profiles. Malacofaunas are rich and well preserved and show an early phase of marshy grassland assemblages followed by a sequence of shade-demanding taxa, reflecting the encroachment of woodland. Several species of biostratigraphical and biogeographical significance are present, allowing correlation between the studied profiles. Stratigraphical hiatus have been identified at both the base and the top of the deposit. Pollen analysis (and radiocarbon dates) of the basal clay, the black peat and lowermost tufa provides additional evidence for stratigraphical discontinuities and supports correlations based on malacological data. It has also allowed the identification another hiatus at the beginning of the sequence

    Principes de subdivision stratigraphique de l’histoire de la terre ; le cas du Quaternaire, sa signification et son rang hiĂ©rarchique

    Get PDF
    Historiquement, les unitĂ©s stratigraphiques furent diffĂ©renciĂ©es sur la base des caractĂ©ristiques de la biosphĂšre. Pour les dĂ©pĂŽts oĂč les fossiles sont communs, l’unitĂ© de base est l’Étage ; chaque Étage correspondant, originellement, Ă  une faune. Ils sont regroupĂ©s en unitĂ©s de rang supĂ©rieur d’aprĂšs l’importance des coupures biologiques. Dans la pratique, les Étages historiques Ă©taient des formations (ensembles de couches) fossilifĂšres rĂ©gionales. Ce fondement a conduit Ă  des difficultĂ©s d’application au niveau des limites car la base de ces Étages Ă©tait localisĂ©e dans des dĂ©pĂŽts transgressifs sur la plate forme continentale succĂ©dant Ă  une lacune de dĂ©pĂŽt. On a alors proposĂ© de fixer les limites Ă  la base du stratotype de l’Étage. Ainsi tous les dĂ©pĂŽts antĂ©rieurs, connus ou inconnus, appartenaient Ă  l’Étage infĂ©rieur ; il restait qu’une portion du temps n’était pas reprĂ©sentĂ©e par des dĂ©pĂŽts dans ces stratotypes historiques. Par la suite, la communautĂ© des stratigraphes a Ă©laborĂ© un nouveau principe, celui des Points Stratotypiques Mondiaux (PSM). Selon cette convention, un Étage est dĂ©fini par un point, choisi par les experts dans une succession continue ; ce point dĂ©finit l’Étage situĂ© au-dessus. DĂšs lors, la limite Ă©tait parfaitement dĂ©finie par des dĂ©pĂŽts antĂ©rieurs et postĂ©rieurs. Pour les stratigraphes francophones, le seul concept de PSM ne suffit pas Ă  la dĂ©finition complĂšte d’une unitĂ© stratigraphique. Celle-ci nĂ©cessite trois composantes : le PSM de la limite infĂ©rieure, le PSM de la limite supĂ©rieure et un contenu dont l’essentiel est l’ensemble des couches du stratotype historique qui a donnĂ© son nom Ă  l’Étage. L’intĂ©rĂȘt de ce type de dĂ©finition est que les notions de couches et de temps coĂŻncident parfaitement ce qui a conduit Ă  proposer, pour les langues oĂč les deux notions Ă©taient distinguĂ©es jusque lĂ , une terminologie unique pour dĂ©signer les unitĂ©s reprĂ©sentĂ©es par les couches (ErathĂšme, SystĂšme, SĂ©rie, Étage, sous Ă©tage infĂ©rieur, sous Ă©tage supĂ©rieur), et les unitĂ©s de temps correspondantes (Ère, PĂ©riode, Époque, Âge, sous Ăąge “ancien”, “tardif”). C’est dans le cadre de l’Union Internationale des Sciences GĂ©ologiques (U.I.S.G) que sont Ă©laborĂ©es les conventions internationales. La Commission Internationale de Stratigraphie est chargĂ©e de la question des unitĂ©s stratigraphiques. Dans ce cadre, des sous commissions sont crĂ©Ă©es, lesquelles chargent des groupes de travail de prendre en main chaque convention. Ces conventions, proposĂ©es dans le cadre de ces Groupes de Travail, sont votĂ©es et avalisĂ©es par les instances de l’U.I.S.G. L’action, dans ces structures, est trĂšs influencĂ©e par un petit nombre de personnes sollicitant le travail d’un trĂšs grand nombre de personnes. Les outils utilisĂ©s par les stratigraphes pour caractĂ©riser les couches ne sont pas disponibles de façon uniforme au cours des temps gĂ©ologiques. Dans cette optique, il existe trois sortes de stratigraphies : 1- celle oĂč les Étages sont adaptĂ©s Ă  la subdivision de l’histoire de la planĂšte avec leur concept fondateur actuel, les PSM et le moyen de corrĂ©lation le plus commun, les fossiles ; 2- pour les temps plus anciens, les moyens de corrĂ©lation sont diffĂ©rents et obligent Ă  changer la rĂšgle ; aujourd’hui, les conventions acceptĂ©es le plus gĂ©nĂ©ralement sont des Ăąges conventionnels ; 3- au Quaternaire, une large palette d’outils est applicable et, selon les milieux, l’un ou l’autre outil sera appliquĂ© et conduira Ă  une subdivision propre. L’exploitation de la diversitĂ© des outils disponibles nĂ©cessite de ne pas s’encombrer d’unitĂ©s uniques, mondiales, quand de nombreux outils peuvent ĂȘtre associĂ©s avec des Ăąges en annĂ©es. Les conventions, concept fixe et contraignant, sont remplacĂ©es par des connaissances, concept variable laissant une plus grande libertĂ© de progrĂšs. En outre, le Quaternaire n’est pas une subdivision comparable aux unitĂ©s antĂ©rieures. Sa durĂ©e n’est pas supĂ©rieure Ă  celle d’un Étage mais son rang hiĂ©rarchique doit aussi prendre en compte sa signification. Pour la premiĂšre fois de l’histoire du globe, les temps quaternaires s’inscrivent dans une biosphĂšre influencĂ©e, et mĂȘme considĂ©rablement influencĂ©e Ă  long terme, par une espĂšce unique. C’est une rĂ©volution fondamentale dans l’évolution. Cette prise en compte est aussi une nĂ©cessitĂ© pour la prise de conscience des responsabilitĂ©s de l’homme vis Ă  vis de son environnement ; elle se traduirait par le fait que l’unitĂ© Quaternaire pourrait se situer, de façon justifiable, au niveau d’une Ère succĂ©dant au CĂ©nozoĂŻque (ou Tertiaire) sinon d’un Éon de mĂȘme rang que le PhanĂ©rozoĂŻque. La question de la position prĂ©cise de sa limite infĂ©rieure est autre ; il ne manque pas d’exemples, dans la colonne stratigraphique, dans lesquels le fait dominant caractĂ©risant une unitĂ© n’apparaĂźt pas prĂ©cisĂ©ment au premier moment de l’unitĂ© en question. Cependant, il serait souhaitable que lâ€™â€œĂ©vĂ©nement guide” pour situer la base du Quaternaire soit en relation avec le fondement de l’influence de l’homme : l’apparition de la pensĂ©e conceptuelle, marquĂ©e par l’apparition des outils vers 2,6 Ma.Throughout the history of geology, stratigraphical units have been identified and named according to the observation that macrofossils evolved over time from one deposit to the next. For example, the Aptian Stage is named after the particular fossils observed in deposits near Apt, SE France (Orbigny, 1840 in Moullade et al., 2006) or the Campanian Stage named after the deposits of the Champagne Charentaise area, SW France (Coquand, 1857 in Neumann and Odin, 2001). The sections selected as typical for a stage are called stratotypes. Thus, for deposits where fossils are common, the fundamental stratigraphical unit is the Stage which most commonly corresponds to a particular fauna found in a given three-dimensional-formation. The quite constant mechanism of evolution has led to the fact that those Stages have duration of the same order of magnitude (3 to 10 Ma) from the Cambrian System to the Neogene System, which lends to the concept of Stage an approximate time-significant value. These Stages are grouped in higher ranking units according to the significance of the cuts in terms of changes in the biosphere. These changes are reported in figure 1 according to modern information gathered by Lethiers (1998). It is clear that the pioneer stratigraphers recognised most of the main cuts in the biological evolution and used them as major unit boundaries (Era or System). So, from the practical point of view, historical Stages are defined as strata characterised by a particular fauna. This practice has led to some difficulties as far as the location of the boundaries is concerned. Often, the apparently “new fauna” results from transgressive deposits on the continental platform following a sedimentary break (and corresponding lack of record, see case 2, fig. 2). In a few other cases, the successive Stages defined in different basins include contemporaneous deposits with different faunas due to endemism or environmental differences (case 1, fig. 2). In order to solve these problems, it was first accepted that boundaries would be defined at the base of the historical stratotypes; in this situation, all deposits, known or unknown, and older than those located at the base of the stratotype pertain to the previous Stage. The remaining problem is that deposits immediately older than the boundary were not necessarily documented in the stratotypes. In order to solve the latter problem, stratigraphers (mainly represented by experts of the Phanerozoic interval of time) have decided to create a new kind of convention using the concept of Global Standard Stratotype Section and Point (GSSP or PSM –Point Stratotypic Global– in French, see fig. 3). According to this new convention, Stage boundaries (instead of Stage bodies) become the key for defining Stages. The GSSP defines a Stage by a point selected in a section where deposition is continuous and the Stage located above the point is defined by this point (Remane et al., 1996). According to this approach, the boundary becomes perfectly defined with deposits able to characterise the geological history above and below. French speaking stratigraphers have discussed this kind of definition (see Odin et al., 2004, 2005) and suggested that a single GSSP is not enough for the full definition of a stratigraphical unit. A complete definition needs three conventions : 1- the GSSP for the lower (older) boundary, 2- the GSSP for the upper (younger) boundary and 3- the historical stratotype which gives its name to the unit and generally documents the major portion of the unit’s content. This new approach using GSSP is interesting in that the distinct concepts of time on the one hand and strata deposited during (and documenting) this time on the other hand are fully coincident. This coincidence suggests that a single terminology is sufficient for designating time and rock units (Zalasiewicz et al., 2004) i.e., the differentiation previously made in some languages between rock units (Erathem, System, Series, Stage, Lower and Upper sub Stages), and the corresponding time units (Era, Period, Epoch, Age, Early and Late sub Stages, see fig. 5) is no longer necessary. The question is : which are the best words to be selected ? Zalasiewicz et al. (2004) would prefer the words shown in the right hand column (fig. 5) while Odin et al. (2004, 2005) would recommend the words shown in bold type in the same figure because they are distinct from the confusing words of the common language (such as epoch or period) and because they have long been used in many languages (upper, lower), even when geological time is concerned. These conventions are worked out within the International Union of Geological Sciences Organisation (IUGS). Within it, the International Commission of Stratigraphy is the appropriate body in charge for these conventions regarding stratigraphical units. This Commission is organised in sub commissions which create Working Groups each in charge for a particular convention (fig. 6). When a 60 % majority vote is obtained for a proposal within a Working Group, it is voted by the parent sub Commission, and the proposal is submitted to the Commission which votes and the accepted convention is submitted to IUGS for ratification. Within this organisation, a comparatively small number of people is usually able to significantly influence the work and decision of a large number of experts. An example of practical GSSP is given in figure 7. The conventions discussed above are mainly valid and of easy application for the fossil-bearing deposits, those which are the subject of interest of a majority of stratigraphers. However, the stratigraphical tools (the techniques of investigation documented in the deposits) applicable in the rocks are not the same in the deposits of different geological age (fig. 8). From that point of view, there are three distinct stratigraphies (Odin, 1994) : 1- the one where Stages are applicable for subdividing the geological history using the presently accepted and fully relevant concept of GSSP ; there, there is an abundant documentation by fossils (biostratigraphy is the key unequivocal dating tool) ; 2- for older time, the key unequivocal dating tool is geochronology ; accordingly, the appropriate sub commission on Precambrian Stratigraphy decided to select numerical ages for definition of conventional unit boundaries (Plumb, 1991) ; 3- for the Quaternary history, there is a large variety of particular tools often applicable in particular deposits or more or less local areas each one being able to generate its own scale (fig. 10). In this situation, the best use of the information suggests that each particular tool may be accepted for subdivision of the geological history. The use of a single series of integrated boundaries would not be easily applicable because all tools do not necessarily locate cuts at the same place while each kind of cut is an interesting piece of information. The correlation between the diversified columns may be achieved with more or less precise connection, using the known age (in years) of the key events. As a result, the Quaternary interval of time does not need unique conventions but is better based on evolving knowledge. According to us, conventions which are constraining and fixed concepts should thus be replaced by knowledge which gives a wider freedom for adapting to evolving information. The Quaternary is not similar to the older stratigraphical units. It is short but its hierarchical ranking must first depend on the significance one wants to give to it. Taking into account the major role of the biosphere in the previous subdivision of the geological history, the ranking of the Quaternary unit should reflect the considerable change in the process of evolution of life brought when the genus Homo appears. From that point of view, the history of the biosphere may be subdivided as shown in figure 9. Looking at this scheme, it is clear that there is a single taxon (man) which is able to influence the whole biosphere to its benefit (?) for the first time on Earth. This is not a detail of the history. The key role of this species is an observation but it is also necessary to point out this key role for becoming conscious of its responsibility with regard to its environment for the future. Taking this into account, the stratigraphical unit where man becomes a major actor of evolution must have the highest ranking, at least at the level of an Era (see fig. 5) distinct from the Cenozoic (or Tertiary) or possibly a sub Era if this kind of unit is useful in order to conform to the proposal of Pillans and Naish (2004). This means that the base of the Quaternary must cut all previous units of lower ranking in the hierarchy and cannot be part of a previous System as suggested in the proposal of inclusion in the Neogene System considered by Clague (2006). The question of the location of the lower boundary of the Quaternary is different from that of its ranking. As far as the nature of the key character of the unit (influence of man on the biosphere) is concerned, there are plenty of units of the time scale for which the key factor is NOT perceptible immediately above the base of the unit (trilobites do not appear at the base of the Palaeozoic, large dinosaurs do not appear at the base of the Mesozoic; mammals do not dominate at the base of the Tertiary). However, it would be advisable to locate the base of the Quaternary near the “guide event” related to the funding of the influence of man on biosphere which is the appearance of the conceptual thinking documented in the deposits by the first man artefacts about 2,5 Ma ago (Semaw et al., 1997, 2003)
    • 

    corecore