17 research outputs found

    The Cosmic Microwave Background Bispectrum and Inflation

    Get PDF
    We derive an expression for the non-Gaussian cosmic-microwave-background (CMB) statistic Il3I_l^3 defined recently by Ferreira, Magueijo, and G\'orski in terms of the slow-roll-inflation parameters ϵ\epsilon and η\eta. This result shows that a nonzero value of Il3I_l^3 in COBE would rule out single-field slow-roll inflation. A sharp change in the slope of the inflaton potential could increase the predicted value of Il3I_l^3, but not significantly. This further suggests that it will be difficult to account for such a detection in multiple-field models in which density perturbations are produced by quantum fluctuations in the scalar field driving inflation. An Appendix shows how to evaluate an integral that is needed in our calculation as well as in more general calculations of CMB bispectra.Comment: 10 pages, no figure

    Giant Merkel cell carcinoma of the eyelid: a case report and review of the literature

    Get PDF
    Merkel cell carcinoma (MCC) is a rare cutaneous tumor and cases located in the eyelid have been described, but still its rarity may lead to difficulty in diagnosis and delay in treatment. A 51-year-old female patient that presented with large lesions in the eyelid underwent surgery after the diagnosis of acute chalazion. Following respiratory distress secondary to pulmonary metastasis, the patient's condition deteriorated and was not fit for complete excision treatment. Histopathological investigation of the biopsies, taken from the tumor, revealed that it was undifferentiated small cell carcinoma. Our aim with this paper is to point out that more cases should be reported for more effective diagnosis, histopathological study, clinical investigation, treatment and prognosis of this specific neoplasm

    The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs

    Get PDF
    Most temperate plants tolerate both chilling and freezing temperatures whereas many species from tropical regions suffer chilling injury when exposed to temperatures slightly above freezing. Cold acclimation induces the expression of cold-regulated genes needed to protect plants against freezing stress. This induction is mediated, in part, by the CBF transcription factor family. To understand the evolution and function of this family in cereals, we identified and characterized 15 different CBF genes from hexaploid wheat. Our analyses reveal that wheat species, T. aestivum and T. monococcum, may contain up to 25 different CBF genes, and that Poaceae CBFs can be classified into 10 groups that share a common phylogenetic origin and similar structural characteristics. Six of these groups (IIIc, IIId, IVa, IVb, IVc and IVd) are found only in the Pooideae suggesting they represent the CBF response machinery that evolved recently during colonization of temperate habitats. Expression studies reveal that five of the Pooideae-specific groups display higher constitutive and low temperature inducible expression in the winter cultivar, and a diurnal regulation pattern during growth at warm temperature. The higher constitutive and inducible expression within these CBF groups is an inherited trait that may play a predominant role in the superior low temperature tolerance capacity of winter cultivars and possibly be a basis of genetic variability in freezing tolerance within the Pooideae subfamily

    Speech Communication

    Get PDF
    Contains table of contents for Part V, table of contents for Section 1, reports on six research projects and a list of publications.C.J. Lebel FellowshipDennis Klatt Memorial FundNational Institutes of Health Grant R01-DC00075National Institutes of Health Grant R01-DC01291National Institutes of Health Grant R01-DC01925National Institutes of Health Grant R01-DC02125National Institutes of Health Grant R01-DC02978National Institutes of Health Grant R01-DC03007National Institutes of Health Grant R29-DC02525National Institutes of Health Grant F32-DC00194National Institutes of Health Grant F32-DC00205National Institutes of Health Grant T32-DC00038National Science Foundation Grant IRI 89-05249National Science Foundation Grant IRI 93-14967National Science Foundation Grant INT 94-2114

    TaVRT-1, a Putative Transcription Factor Associated with Vegetative to Reproductive Transition in Cereals

    No full text
    The molecular genetics of vernalization, defined as the promotion of flowering by cold treatment, is still poorly understood in cereals. To better understand this mechanism, we cloned and characterized a gene that we named TaVRT-1 (wheat [Triticum aestivum] vegetative to reproductive transition-1). Molecular and sequence analyses indicated that this gene encodes a protein homologous to the MADS-box family of transcription factors that comprises certain flowering control proteins in Arabidopsis. Mapping studies have localized this gene to the Vrn-1 regions on the long arms of homeologous group 5 chromosomes, regions that are associated with vernalization and freezing tolerance (FT) in wheat. The level of expression of TaVRT-1 is positively associated with the vernalization response and transition from vegetative to reproductive phase and is negatively associated with the accumulation of COR genes and degree of FT. Comparisons among different wheat genotypes, near-isogenic lines, and cereal species, which differ in their vernalization response and FT, indicated that the gene is inducible only in those species that require vernalization, whereas it is constitutively expressed in spring habit genotypes. In addition, experiments using both the photoperiod-sensitive barley (Hordeum vulgare cv Dicktoo) and short or long day de-acclimated wheat revealed that the expression of TaVRT-1 is also regulated by photoperiod. These expression studies indicate that photoperiod and vernalization may regulate this gene through separate pathways. We suggest that TaVRT-1 is a key developmental gene in the regulatory pathway that controls the transition from the vegetative to reproductive phase in cereals

    TaVRT-2, a Member of the StMADS-11 Clade of Flowering Repressors, Is Regulated by Vernalization and Photoperiod in Wheat

    No full text
    The initiation of the reproductive phase in winter cereals is delayed during winter until favorable growth conditions resume in the spring. This delay is modulated by low temperature through the process of vernalization. The molecular and genetic bases of the interaction between environmental factors and the floral transition in these species are still unknown. However, the recent identification of the wheat (Triticum aestivum L.) TaVRT-1 gene provides an opportunity to decipher the molecular basis of the flowering-time regulation in cereals. Here, we describe the characterization of another gene, named TaVRT-2, possibly involved in the flowering pathway in wheat. Molecular and phylogenetic analyses indicate that the gene encodes a member of the MADS-box transcription factor family that belongs to a clade responsible for flowering repression in several species. Expression profiling of TaVRT-2 in near-isogenic lines and different genotypes with natural variation in their response to vernalization and photoperiod showed a strong relationship with floral transition. Its expression is up-regulated in the winter genotypes during the vegetative phase and in photoperiod-sensitive genotypes during short days, and is repressed by vernalization to a level that allows the transition to the reproductive phase. Protein-protein interaction studies revealed that TaVRT-2 interacts with proteins encoded by two important vernalization genes (TaVRT-1/VRN-1 and VRN-2) in wheat. These results support the hypothesis that TaVRT-2 is a putative repressor of the floral transition in wheat

    Removing Cardiac Artefacts in Magnetoencephalography with Resampled Moving Average Subtraction

    No full text
    Magnetoencephalography (MEG) signals are commonly contaminated by cardiac artefacts (CAs). Principle component analysis and independent component analysis have been widely used for removing CAs, but they typically require a complex procedure for the identification of CA-related components. We propose a simple and efficient method, resampled moving average subtraction (RMAS), to remove CAs from MEG data. Based on an electrocardiogram (ECG) channel, a template for each cardiac cycle was estimated by a weighted average of epochs of MEG data over consecutive cardiac cycles, combined with a resampling technique for accurate alignment of the time waveforms. The template was subtracted from the corresponding epoch of the MEG data. The resampling reduced distortions due to asynchrony between the cardiac cycle and the MEG sampling times. The RMAS method successfully suppressed CAs while preserving both event-related responses and high-frequency (>45 Hz) components in the MEG data
    corecore