200 research outputs found
Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes
A New Strategy for As(V) Biosensing Based on the Inhibition of the Phosphatase Activity of the Arsenate Reductase from Thermus thermophilus
Arsenic (As) pollution is a widespread problem worldwide. In recent years, biosensors
based on enzymatic inhibition have been developed for arsenic detection, making the study of the
effect of inhibitors on the selected enzymatic activity crucial for their setup. The arsenate reductase of
Thermus thermophilus HB27, TtArsC, reduces As(V) into As(III), but is also endowed with phosphatase
activity. This work investigates the inhibitory effects of As(V) and As(III) on phosphatase activity
by taking advantage of a simple colorimetric assay; the results show that both of them are noncompetitive inhibitors affecting the Vmax but not the KM of the reaction. However, their Ki values
are different from each other (15.2 ± 1.6 µm for As(V) and 394.4 ± 40.3 µm with As(III)), indicating a
higher inhibitory effect by As(V). Moreover, the inhibition-based biosystem results to be selective for
As(V) since several other metal ions and salts do not affect TtArsC phosphatase activity; it exhibits a
sensitivity of 0.53 ± 0.03 mU/mg/µm and a limit of detection (LOD) of 0.28 ± 0.02 µm. The good
sensitivity and specificity for As(V) point to consider inhibition of TtArsC phosphatase activity for
the setup of a novel biosensor for the detection of As(V)
Insight into CAZymes of Alicyclobacillus mali FL18: Characterization of a New Multifunctional GH9 Enzyme
In the bio-based era, cellulolytic and hemicellulolytic enzymes are biocatalysts used in many industrial processes, playing a key role in the conversion of recalcitrant lignocellulosic waste biomasses. In this context, many thermophilic microorganisms are considered as convenient sources of carbohydrate-active enzymes (CAZymes). In this work, a functional genomic annotation of Alicyclobacillus mali FL18, a recently discovered thermo-acidophilic microorganism, showed a wide reservoir of putative CAZymes. Among them, a novel enzyme belonging to the family 9 of glycosyl hydrolases (GHs), named AmCel9, was identified; in-depth in silico analyses highlighted that AmCel9 shares general features with other GH9 members. The synthetic gene was expressed in Escherichia coli and the recombinant protein was purified and characterized. The monomeric enzyme has an optimal catalytic activity at pH 6.0 and has comparable activity at temperatures ranging from 40 °C to 70 °C. It also has a broad substrate specificity, a typical behavior of multifunctional cellulases; the best activity is displayed on β-1,4 linked glucans. Very interestingly, AmCel9 also hydrolyses filter paper and microcrystalline cellulose. This work gives new insights into the properties of a new thermophilic multifunctional GH9 enzyme, that looks a promising biocatalyst for the deconstruction of lignocellulose
Antioxidant capacity of Rigenase®, a specific aqueous extract of triticum vulgare
Reactive species of oxygen (ROS), responsible for oxidative stress, accumulate in various
tissues damaged by burns, decubitus ulcers, and vascular lesions. Antioxidants play an important
and well-documented role in healing of chronic and acute wounds. Rigenase®, a specific extract of
Triticum vulgare manufactured by Farmaceutici Damor, is employed in products used for the
regeneration of tissue injuries. In this work, we show that Rigenase® exhibits a scavenging effect
toward free radicals, thus pointing to its relevant antioxidant activity
A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications
The production of biochemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Weizmannia coagulans species. So far, the genomes of 47 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of Carbohydrate-Active enZymes (CAZymes), secretion systems, and resistance mechanisms to environmental challenges. Moreover, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated (Cas) genes, was also analyzed. Overall, this study expands our understanding of the strain’s genomic diversity of W. coagulans to fully exploit its potential in biotechnological applications
Bioprospecting of Extremophilic Microorganisms to Address Environmental Pollution
Geothermal springs are rich in various metal ions due to the interaction between rock and water that takes place in the deep aquifer. Moreover, due to seasonality variation in pH and temperature, fluctuation in element composition is periodically observed within these extreme environments, influencing the environmental microbial communities. Extremophilic microorganisms that thrive in volcanic thermal vents have developed resistance mechanisms to handle several metal ions present in the environment, thus taking part to complex metal biogeochemical cycles. Moreover, extremophiles and their products have found an extensive foothold in the market, and this holds true especially for their enzymes. In this context, their characterization is functional to the development of biosystems and bioprocesses for environmental monitoring and bioremediation. To date, the isolation and cultivation under laboratory conditions of extremophilic microorganisms still represent a bottleneck for fully exploiting their biotechnological potential. This work describes a streamlined protocol for the isolation of thermophilic microorganisms from hot springs as well as their genotypical and phenotypical identification through the following steps: (1) Sampling of microorganisms from geothermal sites ("Pisciarelli", a volcanic area of Campi Flegrei in Naples, Italy); (2) Isolation of heavy metal resistant microorganisms; (3) Identification of microbial isolates; (4) Phenotypical characterization of the isolates. The methodologies described in this work might be generally applied also for the isolation of microorganisms from other extreme environments
Display of the peroxiredoxin Bcp1 of Sulfolobus solfataricus on probiotic spores of Bacillus megaterium.
Bacterial spores displaying heterologous proteins have been proposed as a safe and efficient method for delivery of antigens and enzymes to animal mucosal surfaces. Initial studies have been performed using Bacillus subtilis spores, but other spore forming organisms have also been considered. B. megaterium spores have been shown capable of displaying large amounts of a model heterologous protein (Discosoma red fluorescent protein mRFP) that in part crossed the exosporium to localize in the space between the outer coat layer and the exosporium. Here, B. megaterium spores have been used to adsorb Bcp1 (bacterioferritin comigratory protein 1), a peroxiredoxin of the archaeon Sulfolobus solfataricus, known to have an antioxidant activity. The spores were highly efficient in adsorbing the heterologous enzyme which, once adsorbed, retained its activity. The adsorbed Bcp1 localized beneath the exosporium, filling the space between the outer coat and the exosporium. This unusual localization contributed to the stability of the enzyme-spore interaction and to the protection of the adsorbed enzyme in simulated intestinal or gastric conditions
Genomic Insight of Alicyclobacillus mali FL18 Isolated From an Arsenic-Rich Hot Spring
Extreme environments are excellent places to find microorganisms capable of tolerating extreme temperature, pH, salinity pressure, and elevated concentration of heavy metals and other toxic compounds. In the last decades, extremophilic microorganisms have been extensively studied since they can be applied in several fields of biotechnology along with their enzymes. In this context, the characterization of heavy metal resistance determinants in thermophilic microorganisms is the starting point for the development of new biosystems and bioprocesses for environmental monitoring and remediation. This work focuses on the isolation and the genomic exploration of a new arsenic-tolerant microorganism, classified as Alicyclobacillus mali FL18. The bacterium was isolated from a hot mud pool of the solfataric terrains in Pisciarelli, a well-known hydrothermally active zone of the Campi Flegrei volcano near Naples in Italy. A. mali FL18 showed a good tolerance to arsenite (MIC value of 41 mM), as well as to other metals such as nickel (MIC 30 mM), cobalt, and mercury (MIC 3 mM and 17 ÎĽM, respectively). Signatures of arsenic resistance genes (one arsenate reductase, one arsenite methyltransferase, and several arsenite exporters) were found interspersed in the genome as well as several multidrug resistance efflux transporters that could be involved in the export of drugs and heavy metal ions. Moreover, the strain showed a high resistance to bacitracin and ciprofloxacin, suggesting that the extreme environment has positively selected multiple resistances to different toxic compounds. This work provides, for the first time, insights into the heavy metal tolerance and antibiotic susceptibility of an Alicyclobacillus strain and highlights its putative molecular determinants
Ultra-rapid glutathionylation of chymotrypsinogen in its molten globule-like conformation: a comparison to archaeal proteins
Chymotrypsinogen, when reduced and taken to its molten globule-like conformation, displays a single cysteine with an unusual kinetic propensity toward oxidized glutathione (GSSG) and other organic thiol reagents. A single residue, identified by mass spectrometry like Cys1, reacts with GSSG about 1400 times faster than an unperturbed protein cysteine. A reversible protein-GSSG complex and a low pK(a) (8.1 +/- 0.1) make possible such astonishing kinetic property which is absent toward other natural disulfides like cystine, homocystine and cystamine. An evident hyper-reactivity toward 5,5 ' -dithiobis-(2-nitrobenzoic acid) (DTNB) and 1-chloro-2,4-dinitrobenzene (CDNB) was also found for this specific residue. The extraordinary reactivity toward GSSG is absent in two proteins of the thermophilic archaeon Sulfolobus solfataricus, an organism lacking glutathione: the Protein Disulphide Oxidoreductase (SsPDO) and the Bacterioferritin Comigratory Protein 1 (Bcp1) that displays Cys residues with an even lower pK(a) value (7.5 +/- 0.1) compared to chymotrypsinogen. This study, which also uses single mutants in Cys residues for Bcp1, proposes that this hyper-reactivity of a single cysteine, similar to that found in serum albumin, lysozyme, ribonuclease, may have relevance to drive the "incipit" of the oxidative folding of proteins from organisms where the glutathione/oxidized glutathione (GSH/GSSG) system is present
An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27.
Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn2+/Cd2+-dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells
- …