24,607 research outputs found
Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters
By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface
brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784
we access cosmic acceleration employing a kinematic description. Such result is
fully independent on the validity of any metric gravity theory, the possible
matter-energy contents filling the Universe, as well as on the SNe Ia Hubble
diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth
Marcel Grossmann Meeting on General Relativit
Chemical Potential and the Nature of the Dark Energy: The case of phantom
The influence of a possible non zero chemical potential on the nature
of dark energy is investigated by assuming that the dark energy is a
relativistic perfect simple fluid obeying the equation of state (EoS),
(). The entropy condition, ,
implies that the possible values of are heavily dependent on the
magnitude, as well as on the sign of the chemical potential. For , the
-parameter must be greater than -1 (vacuum is forbidden) while for not only the vacuum but even a phantomlike behavior () is
allowed. In any case, the ratio between the chemical potential and temperature
remains constant, that is, . Assuming that the dark energy
constituents have either a bosonic or fermionic nature, the general form of the
spectrum is also proposed. For bosons is always negative and the extended
Wien's law allows only a dark component with which includes
vacuum and the phantomlike cases. The same happens in the fermionic branch for
are permmited only if . The thermodynamics and statistical arguments constrain the
EoS parameter to be , a result surprisingly close to the maximal
value required to accelerate a FRW type universe dominated by matter and dark
energy ().Comment: 7 pages, 5 figure
Are Galaxy Clusters Suggesting an Accelerating Universe?
The present cosmic accelerating stage is discussed through a new kinematic
method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface
brightness data from galaxy clusters. By using the SZE/X-ray data from 38
galaxy clusters in the redshift range [Bonamente et
al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is
accelerating and that the transition from an earlier decelerating to a late
time accelerating regime is relatively recent. The ability of the ongoing
Planck satellite mission to obtain tighter constraints on the expansion history
through SZE/X-ray angular diameters is also discussed. Our results are fully
independent on the validity of any metric gravity theory, the possible matter-
energy contents filling the Universe, as well as on the SNe Ia Hubble diagram
from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings
of the Conferenc
Non-nequilibrium model on Apollonian networks
We investigate the Majority-Vote Model with two states () and a noise
on Apollonian networks. The main result found here is the presence of the
phase transition as a function of the noise parameter . We also studies de
effect of redirecting a fraction of the links of the network. By means of
Monte Carlo simulations, we obtained the exponent ratio ,
, and for several values of rewiring probability . The
critical noise was determined and also was calculated. The
effective dimensionality of the system was observed to be independent on ,
and the value is observed for these networks. Previous
results on the Ising model in Apollonian Networks have reported no presence of
a phase transition. Therefore, the results present here demonstrate that the
Majority-Vote Model belongs to a different universality class as the
equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure
Accelerating Cold Dark Matter Cosmology ()
A new kind of accelerating flat model with no dark energy that is fully
dominated by cold dark matter (CDM) is investigated. The number of CDM
particles is not conserved and the present accelerating stage is a consequence
of the negative pressure describing the irreversible process of gravitational
particle creation. A related work involving accelerating CDM cosmology has been
discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53,
4287 (1996)]. However, in order to have a transition from a decelerating to an
accelerating regime at low redshifts, the matter creation rate proposed here
includes a constant term of the order of the Hubble parameter. In this case,
does not need to be small in order to solve the age problem and the
transition happens even if the matter creation is negligible during the
radiation and part of the matter dominated phase. Therefore, instead of the
vacuum dominance at redshifts of the order of a few, the present accelerating
stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the
gravitational particle creation process. As an extra bonus, in the present
scenario does not exist the coincidence problem that plagues models with
dominance of dark energy. The model is able to harmonize a CDM picture with the
present age of the universe, the latest measurements of the Hubble parameter
and the Supernovae observations.Comment: 9 pages, 6 figures, typos corrected, references added, discussion in
Appendix B extende
Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism
We probe the two-scale factor universality hypothesis by evaluating, firstly
explicitly and analytically at the one-loop order, the loop quantum corrections
to the amplitude ratios for O() scalar field theories with
rotation symmetry-breaking in three distinct and independent methods in which
the rotation symmetry-breaking mechanism is treated exactly. We show that the
rotation symmetry-breaking amplitude ratios turn out to be identical in the
three methods and equal to their respective rotation symmetry-breaking ones,
although the amplitudes themselves, in general, depend on the method employed
and on the rotation symmetry-breaking parameter. At the end, we show that all
these results can be generalized, through an inductive process based on a
general theorem emerging from the exact calculation, to any loop level and
physically interpreted based on symmetry ideas.Comment: 17 pages, 3 figure
- …