27,918 research outputs found
Scale Factor Self-Dual Cosmological Models
We implement a conformal time scale factor duality for
Friedmann-Robertson-Walker cosmological models, which is consistent with the
weak energy condition. The requirement for self-duality determines the
equations of state for a broad class of barotropic fluids. We study the example
of a universe filled with two interacting fluids, presenting an accelerated and
a decelerated period, with manifest UV/IR duality. The associated self-dual
scalar field interaction turns out to coincide with the "radiation-like"
modified Chaplygin gas models. We present an equivalent realization of them as
gauged K\"ahler sigma models (minimally coupled to gravity) with very specific
and interrelated K\"ahler- and super-potentials. Their applications in the
description of hilltop inflation and also as quintessence models for the late
universe are discussed.Comment: v3, improved and extended version to be published in JHEP; new
results added to sect.2; 4 figures; 17pg
Asteroseismology and Magnetic Cycles
Small cyclic variations in the frequencies of acoustic modes are expected to
be a common phenomenon in solar-like pulsators, as a result of stellar magnetic
activity cycles. The frequency variations observed throughout the solar and
stellar cycles contain information about structural changes that take place
inside the stars as well as about variations in magnetic field structure and
intensity. The task of inferring and disentangling that information is,
however, not a trivial one. In the sun and solar-like pulsators, the direct
effect of the magnetic field on the oscillations might be significantly
important in regions of strong magnetic field (such as solar- / stellar-spots),
where the Lorentz force can be comparable to the gas-pressure gradient. Our aim
is to determine the sun- / stellar-spots effect on the oscillation frequencies
and attempt to understand if this effect contributes strongly to the frequency
changes observed along the magnetic cycle. The total contribution of the spots
to the frequency shifts results from a combination of direct and indirect
effects of the magnetic field on the oscillations. In this first work we
considered only the indirect effect associated with changes in the
stratification within the starspot. Based on the solution of the wave equation
and the variational principle we estimated the impact of these stratification
changes on the oscillation frequencies of global modes in the sun and found
that the induced frequency shifts are about two orders of magnitude smaller
than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and
Asteroseismology, to be published on 3 December 2012 at Astronomische
Nachrichten 333, No. 10, 1032-103
Magnetic braking in young late-type stars: the effect of polar spots
The concentration of magnetic flux near the poles of rapidly rotating cool
stars has been recently proposed as an alternative mechanism to dynamo
saturation in order to explain the saturation of angular momentum loss. In this
work we study the effect of magnetic surface flux distribution on the coronal
field topology and angular momentum loss rate. We investigate if magnetic flux
concentration towards the pole is a reasonable alternative to dynamo
saturation. We construct a 1D wind model and also apply a 2-D self-similar
analytical model, to evaluate how the surface field distribution affects the
angular momentum loss of the rotating star. From the 1D model we find that, in
a magnetically dominated low corona, the concentrated polar surface field
rapidly expands to regions of low magnetic pressure resulting in a coronal
field with small latitudinal variation. We also find that the angular momentum
loss rate due to a uniform field or a concentrated field with equal total
magnetic flux is very similar. From the 2D wind model we show that there are
several relevant factors to take into account when studying the angular
momentum loss from a star. In particular, we show that the inclusion of force
balance across the field in a wind model is fundamental if realistic
conclusions are to be drawn from the effect of non-uniform surface field
distribution on magnetic braking. This model predicts that a magnetic field
concentrated at high latitudes leads to larger Alfven radii and larger braking
rates than a smoother field distribution. From the results obtained, we argue
that the magnetic surface field distribution towards the pole does not directly
limit the braking efficiency of the wind.Comment: 11 pages, 10 figures, accepted in A&
Some Extended Classes of Distributions: Characterizations and Properties
Based on a simple relationship between two truncated moments and certain functions of the th order statistic, we characterize some extended classes of distributions recently proposed in the statistical literature, videlicet Beta-G, Gamma-G, Kumaraswamy-G and McDonald-G. Several properties of these extended classes and some special cases are discussed. We compare these classes in terms of goodness-of-fit criteria using some baseline distributions by means of two real data sets
- …