28,283 research outputs found

    Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates

    Full text link
    We performed extensive Monte Carlo simulations of the irreversible adsorption of polydispersed disks inside the cells of a patterned substrate. The model captures relevant features of the irreversible adsorption of spherical colloidal particles on patterned substrates. The pattern consists of (equal) square cells, where adsorption can take place, centered at the vertices of a square lattice. Two independent, dimensionless parameters are required to control the geometry of the pattern, namely, the cell size and cell-cell distance, measured in terms of the average particle diameter. However, to describe the phase diagram, two additional dimensionless parameters, the minimum and maximum particle radii are also required. We find that the transition between any two adjacent regions of the phase diagram solely depends on the largest and smallest particle sizes, but not on the shape of the distribution function of the radii. We consider size dispersions up-to 20% of the average radius using a physically motivated truncated Gaussian-size distribution, and focus on the regime where adsorbing particles do not interact with those previously adsorbed on neighboring cells to characterize the jammed state structure. The study generalizes previous exact relations on monodisperse particles to account for size dispersion. Due to the presence of the pattern, the coverage shows a non-monotonic dependence on the cell size. The pattern also affects the radius of adsorbed particles, where one observes preferential adsorption of smaller radii particularly at high polydispersity.Comment: 9 pages, 5 figure

    Caracterização geoambiental de áreas antropizadas no Município de Itaboraí, Rio de Janeiro.

    Get PDF
    bitstream/CNPS/11855/1/bp162000itaborai.pdfEquipe técnica: Ciríaca Arcangela F. de Santana do Carmo, Sergio Gomes Tôsto, Sebastião Barreiros Calderano, Hélio Monteiro Penha, Braz Calderano Filho, Waldir de Carvalho Júnior, Washington de Oliveira Barreto, José Lopes de Paula, Aluísio Granato de Andrade

    Clustering, Angular Size and Dark Energy

    Full text link
    The influence of dark matter inhomogeneities on the angular size-redshift test is investigated for a large class of flat cosmological models driven by dark energy plus a cold dark matter component (XCDM model). The results are presented in two steps. First, the mass inhomogeneities are modeled by a generalized Zeldovich-Kantowski-Dyer-Roeder (ZKDR) distance which is characterized by a smoothness parameter α(z)\alpha(z) and a power index γ\gamma, and, second, we provide a statistical analysis to angular size data for a large sample of milliarcsecond compact radio sources. As a general result, we have found that the α\alpha parameter is totally unconstrained by this sample of angular diameter data.Comment: 9 pages, 7 figures, accepted in Physical Review

    On the 2D Dirac oscillator in the presence of vector and scalar potentials in the cosmic string spacetime in the context of spin and pseudospin symmetries

    Full text link
    The Dirac equation with both scalar and vector couplings describing the dynamics of a two-dimensional Dirac oscillator in the cosmic string spacetime is considered. We derive the Dirac-Pauli equation and solve it in the limit of the spin and the pseudo-spin symmetries. We analyze the presence of cylindrical symmetric scalar potentials which allows us to provide analytic solutions for the resultant field equation. By using an appropriate ansatz, we find that the radial equation is a biconfluent Heun-like differential equation. The solution of this equation provides us with more than one expression for the energy eigenvalues of the oscillator. We investigate these energies and find that there is a quantum condition between them. We study this condition in detail and find that it requires the fixation of one of the physical parameters involved in the problem. Expressions for the energy of the oscillator are obtained for some values of the quantum number nn. Some particular cases which lead to known physical systems are also addressed.Comment: 15 pages, 8 figures, matches published versio

    Exact Lyapunov Exponent for Infinite Products of Random Matrices

    Full text link
    In this work, we give a rigorous explicit formula for the Lyapunov exponent for some binary infinite products of random 2×22\times 2 real matrices. All these products are constructed using only two types of matrices, AA and BB, which are chosen according to a stochastic process. The matrix AA is singular, namely its determinant is zero. This formula is derived by using a particular decomposition for the matrix BB, which allows us to write the Lyapunov exponent as a sum of convergent series. Finally, we show with an example that the Lyapunov exponent is a discontinuous function of the given parameter.Comment: 1 pages, CPT-93/P.2974,late
    • …
    corecore