38,183 research outputs found

    Constraints on Cold Dark Matter Accelerating Cosmologies and Cluster Formation

    Full text link
    We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1\Omega_{m}=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving BAO + CMB + SNe Ia data yields Ω~m=0.28±0.01{\tilde{\Omega}}_{m}= 0.28\pm 0.01 (1σ1\sigma) where Ω~m\tilde{{\Omega}}_{m} is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from large scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Λ\LambdaCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Λ\LambdaCDM scenarios trough a more detailed analysis involving CMB, weak lensing, as well as the large scale structure.Comment: 12 pages, 3 figures, Accepted for publication by Physical Rev.

    New Cosmic Accelerating Scenario without Dark Energy

    Get PDF
    We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (Λ\LambdaCDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes sub-dominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard Λ\LambdaCDM model, however, there is no dark energy. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by ρI/ρf=(HI/Hf)210122\rho_I/\rho_f=(H_I/H_f)^{2} \sim 10^{122}, a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Λ\Lambda growth index, γΛ6/11\gamma_{\Lambda} \simeq 6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a χ2\chi^{2} statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.Comment: 12 pages, 3 figures, accepted for publication by Phys. Rev. D. (final version, some references have corrected). arXiv admin note: substantial text overlap with arXiv:1106.193

    Kinematic Constraints to the Transition Redshift from SNe Ia Union Data

    Full text link
    The kinematic approach to cosmological tests provides a direct evidence to the present accelerating stage of the universe which does not depend on the validity of general relativity, as well as on the matter-energy content of the Universe. In this context, we consider here a linear two-parameter expansion for the decelerating parameter, q(z)=q0+q1zq(z)=q_0+q_1z, where q0q_0 and q1q_1 are arbitrary constants to be constrained by the Union supernovae data. By assuming a flat Universe we find that the best fit to the pair of free parameters is (q0,q1q_0,q_1) = (0.73,1.5)-0.73,1.5) whereas the transition redshift is zt=0.490.07+0.14z_t = 0.49^{+0.14}_{-0.07} (1σ1\sigma) 0.12+0.54^{+0.54}_{-0.12} (2σ2\sigma). This kinematic result is in agreement with some independent analyzes and accommodates more easily many dynamical flat models (like Λ\LambdaCDM).Comment: 10 pages, 4 figures, 1 tabl
    corecore