22,569 research outputs found

    Spin Disorder and Magnetic Anisotropy in Fe3O4 Nanoparticles

    Full text link
    We have studied the magnetic behavior of dextran-coated magnetite (Fe3_3O4_4) nanoparticles with median particle size \left=8 nmnm. Magnetization curves and in-field M\"ossbauer spectroscopy measurements showed that the magnetic moment MSM_S of the particles was much smaller than the bulk material. However, we found no evidence of magnetic irreversibility or non-saturating behavior at high fields, usually associated to spin canting. The values of magnetic anisotropy KeffK_{eff} from different techniques indicate that surface or shape contributions are negligible. It is proposed that these particles have bulk-like ferrimagnetic structure with ordered A and B sublattices, but nearly compensated magnetic moments. The dependence of the blocking temperature with frequency and applied fields, TB(H,ω)T_B(H,\omega), suggests that the observed non-monotonic behavior is governed by the strength of interparticle interactions.Comment: 11 pages, 7 figures, 3 Table

    On Useful Conformal Tranformations In General Relativity

    Full text link
    Local conformal transformations are known as a useful tool in various applications of the gravitational theory, especially in cosmology. We describe some new aspects of these transformations, in particular using them for derivation of Einstein equations for the cosmological and Schwarzschild metrics. Furthermore, the conformal transformation is applied for the dimensional reduction of the Gauss-Bonnet topological invariant in d=4d=4 to the spaces of lower dimensions.Comment: 17 pages, LaTeX. The paper is intended mainly for pedagogical purposes and represents a collection of exercises concerning local conformal transformations and dimensional reduction. To be published in "Gravitation and Cosmology

    Knizhnik-Zamolodchikov-Bernard equations connected with the eight-vertex model

    Full text link
    Using quasiclassical limit of Baxter's 8 - vertex R - matrix, an elliptic generalization of the Knizhnik-Zamolodchikov equation is constructed. Via Off-Shell Bethe ansatz an integrable representation for this equation is obtained. It is shown that there exists a gauge transformation connecting this equation with Knizhnik-Zamolodchikov-Bernard equation for SU(2)-WZNW model on torus.Comment: 20 pages latex, macro: tcilate

    Accelerating Cold Dark Matter Cosmology (ΩΛ0\Omega_{\Lambda}\equiv 0)

    Full text link
    A new kind of accelerating flat model with no dark energy that is fully dominated by cold dark matter (CDM) is investigated. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. A related work involving accelerating CDM cosmology has been discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53, 4287 (1996)]. However, in order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here includes a constant term of the order of the Hubble parameter. In this case, H0H_0 does not need to be small in order to solve the age problem and the transition happens even if the matter creation is negligible during the radiation and part of the matter dominated phase. Therefore, instead of the vacuum dominance at redshifts of the order of a few, the present accelerating stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the gravitational particle creation process. As an extra bonus, in the present scenario does not exist the coincidence problem that plagues models with dominance of dark energy. The model is able to harmonize a CDM picture with the present age of the universe, the latest measurements of the Hubble parameter and the Supernovae observations.Comment: 9 pages, 6 figures, typos corrected, references added, discussion in Appendix B extende

    Thermodynamics of Decaying Vacuum Cosmologies

    Get PDF
    The thermodynamic behavior of vacuum decaying cosmologies is investigated within a manifestly covariant formulation. Such a process corresponds to a continuous irreversible energy flow from the vacuum component to the created matter constituents. It is shown that if the specific entropy per particle remains constant during the process, the equilibrium relations are preserved. In particular, if the vacuum decays into photons, the energy density ρ\rho and average number density of photons nn scale with the temperature as ρT4\rho \sim T^{4} and nT3n \sim T^{3}. The temperature law is determined and a generalized Planckian type form of the spectrum, which is preserved in the course of the evolution, is also proposed. Some consequences of these results for decaying vacuum FRW type cosmologies as well as for models with ``adiabatic'' photon creation are discussed.Comment: 21 pages, uses LATE
    corecore