45,308 research outputs found
Remarks on a Decrumpling Model of the Universe
It is argued that when the dimension of space is a constant integer the full
set of Einstein's field equations has more information than the spatial
components of Einstein's equation plus the energy conservation law. Applying
the former approach to the decrumpling FRW cosmology recently proposed, it is
shown that the spacetime singularity cannot be avoided and that turning points
are absent. This result is in contrast to the decrumpling nonsingular spacetime
model with turning points previously obtained using the latter approach.Comment: 8 pages, latex, no figure
Majority-vote on directed Small-World networks
On directed Small-World networks the
Majority-vote model with noise is now studied through Monte Carlo
simulations. In this model, the order-disorder phase transition of the order
parameter is well defined in this system. We calculate the value of the
critical noise parameter q_c for several values of rewiring probability p of
the directed Small-World network. The critical exponentes beta/nu, gamma/nu and
1/nu were calculated for several values of p.Comment: 16 pages including 9 figures, for Int. J. Mod. Phys.
Ising model spin S=1 on directed Barabasi-Albert networks
On directed Barabasi-Albert networks with two and seven neighbours selected
by each added site, the Ising model with spin S=1/2 was seen not to show a
spontaneous magnetisation. Instead, the decay time for flipping of the
magnetisation followed an Arrhenius law for Metropolis and Glauber algorithms,
but for Wolff cluster flipping the magnetisation decayed exponentially with
time. On these networks the
Ising model spin S=1 is now studied through Monte Carlo simulations.
However, in this model, the order-disorder phase transition is well defined
in this system. We have obtained a first-order phase transition for values of
connectivity m=2 and m=7 of the directed Barabasi-Albert network.Comment: 8 pages for Int. J. Mod. Phys. C; e-mail: [email protected]
The Anatomy of a Scientific Rumor
The announcement of the discovery of a Higgs boson-like particle at CERN will
be remembered as one of the milestones of the scientific endeavor of the 21st
century. In this paper we present a study of information spreading processes on
Twitter before, during and after the announcement of the discovery of a new
particle with the features of the elusive Higgs boson on 4th July 2012. We
report evidence for non-trivial spatio-temporal patterns in user activities at
individual and global level, such as tweeting, re-tweeting and replying to
existing tweets. We provide a possible explanation for the observed
time-varying dynamics of user activities during the spreading of this
scientific "rumor". We model the information spreading in the corresponding
network of individuals who posted a tweet related to the Higgs boson discovery.
Finally, we show that we are able to reproduce the global behavior of about
500,000 individuals with remarkable accuracy.Comment: 11 pages, 8 figure
Simulation of majority rule disturbed by power-law noise on directed and undirected Barabasi-Albert networks
On directed and undirected Barabasi-Albert networks the Ising model with spin
S=1/2 in the presence of a kind of noise is now studied through Monte Carlo
simulations. The noise spectrum P(n) follows a power law, where P(n) is the
probability of flipping randomly select n spins at each time step. The noise
spectrum P(n) is introduced to mimic the self-organized criticality as a model
influence of a complex environment. In this model, different from the square
lattice, the order-disorder phase transition of the order parameter is not
observed. For directed Barabasi-Albert networks the magnetisation tends to zero
exponentially and for undirected Barabasi-Albert networks, it remains constant.Comment: 6 pages including many figures, for Int. J. Mod. Phys.
Scale Factor Self-Dual Cosmological Models
We implement a conformal time scale factor duality for
Friedmann-Robertson-Walker cosmological models, which is consistent with the
weak energy condition. The requirement for self-duality determines the
equations of state for a broad class of barotropic fluids. We study the example
of a universe filled with two interacting fluids, presenting an accelerated and
a decelerated period, with manifest UV/IR duality. The associated self-dual
scalar field interaction turns out to coincide with the "radiation-like"
modified Chaplygin gas models. We present an equivalent realization of them as
gauged K\"ahler sigma models (minimally coupled to gravity) with very specific
and interrelated K\"ahler- and super-potentials. Their applications in the
description of hilltop inflation and also as quintessence models for the late
universe are discussed.Comment: v3, improved and extended version to be published in JHEP; new
results added to sect.2; 4 figures; 17pg
On the nature of the spin-polarized hole states in a quasi-two-dimensional GaMnAs ferromagnetic layer
A self-consistent calculation of the density of states and the spectral
density function is performed in a two-dimensional spin-polarized hole system
based on a multiple-scattering approximation. Using parameters corresponding to
GaMnAs thin layers, a wide range of Mn concentrations and hole densities have
been explored to understand the nature, localized or extended, of the
spin-polarized holes at the Fermi level for several values of the average
magnetization of the Mn ystem. We show that, for a certain interval of Mn and
hole densities, an increase on the magnetic order of the Mn ions come together
with a change of the nature of the states at the Fermi level. This fact
provides a delocalization of spin-polarized extended states anti-aligned to the
average Mn magnetization, and a higher spin-polarization of the hole gas. These
results are consistent with the occurrence of ferromagnetism with relatively
high transition temperatures observed in some thin film samples and
multilayered structures of this material.Comment: 3 page
- …