22,270 research outputs found
Quantum Fluctuations in Dipolar Bose Gases
We investigate the influence of quantum fluctuations upon dipolar Bose gases
by means of the Bogoliubov-de Gennes theory. Thereby, we make use of the local
density approximation to evaluate the dipolar exchange interaction between the
condensate and the excited particles. This allows to obtain the Bogoliubov
spectrum analytically in the limit of large particle numbers. After discussing
the condensate depletion and the ground-state energy correction, we derive
quantum corrected equations of motion for harmonically trapped dipolar Bose
gases by using superfluid hydrodynamics. These equations are subsequently
applied to analyze the equilibrium configuration, the low-lying oscillation
frequencies, and the time-of-flight dynamics. We find that both atomic magnetic
and molecular electric dipolar systems offer promising scenarios for detecting
beyond mean-field effects.Comment: Published in PR
An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime
A simple approximation formula is derived here for the dependence of the
period of a simple pendulum on amplitude that only requires a pocket calculator
and furnishes an error of less than 0.25% with respect to the exact period. It
is shown that this formula describes the increase of the pendulum period with
amplitude better than other simple formulas found in literature. A good
agreement with experimental data for a low air-resistance pendulum is also
verified and it suggests, together with the current availability/precision of
timers and detectors, that the proposed formula is useful for extending the
pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic
Sliding Blocks Revisited: A simulational Study
A computational study of sliding blocks on inclined surfaces is presented.
Assuming that the friction coefficient is a function of position, the
probability for the block to slide down over a length is
numerically calculated. Our results are consistent with recent experimental
data suggesting a power-law distribution of events over a wide range of
displacements when the chute angle is close to the critical one, and suggest
that the variation of along the surface is responsible for this.Comment: 6 pages, 4 figures. submitted to Int. J. Mod. Phys. (Proc. Brazilian
Wokshop on Simulational Physics
- …