306 research outputs found

    Effects of rotation in the energy spectrum of C60C_{60}

    Full text link
    In this paper, motivated by the experimental evidence of rapidly rotating C60C_{60} molecules in fullerite, we study the low-energy electronic states of rotating fullerene within a continuum model. In this model, the low-energy spectrum is obtained from an effective Dirac equation including non-Abelian gauge fields that simulate the pentagonal rings of the molecule. Rotation is incorporated into the model by solving the effective Dirac equation in the rotating referential frame. The exact analytical solution for the eigenfunctions and energy spectrum is obtained, yielding the previously known static results in the no rotation limit. Due to the coupling between rotation and total angular momentum, that appears naturally in the rotating frame, the zero modes of static C60C_{60} are shifted and also suffer a Zeeman splitting whithout the presence of a magnetic field

    Valley splitting depending on the size and location of a silicon quantum dot

    Full text link
    The valley splitting (VS) of a silicon quantum dot plays an important role for the performance and scalability of silicon spin qubits. In this work we investigate the VS of a SiGe/Si/SiGe heterostructure as a function of the size and location of the silicon quantum dot. We use the effective mass approach to describe a realistic system, which takes into account concentration fluctuations at the Si/SiGe interfaces and also the interface roughness. We predict that the size of the quantum dot is an important parameter for the enhancement of the VS and it can also induce a transition between the disorder-dominated to deterministic-enhanced regimes. Analyzing how the VS changes when we move the quantum dot in a specific direction, we obtain that the size of the quantum dot can be used to reduce the variability of the VS, which is relevant for charge/spin shuttling

    Interface and electromagnetic effects in the valley splitting of Si quantum dots

    Full text link
    The performance and scalability of silicon spin qubits depend directly on the value of the conduction band valley splitting. In this work, we investigate the influence of electromagnetic fields and the interface width on the valley splitting of a quantum dot in a Si/SiGe heterostructure. We propose a new three-dimensional theoretical model within the effective mass theory for the calculation of the valley splitting in such heterostructures that takes into account the concentration fluctuation at the interfaces and the lateral confinement. With this model, we predict that the electric field is an important parameter for valley splitting engineering, since it can shift the probability distribution away from small valley splittings for some interface widths. We also obtain a critical softness of the interfaces in the heterostructure, above which the best option for spin qubits is to consider an interface as wide as possible

    Inertial-Hall effect: the influence of rotation on the Hall conductivity

    Get PDF
    Inertial effects play an important role in classical mechanics but have been largely overlooked in quantum mechanics. Nevertheless, the analogy between inertial forces on mass particles and electromagnetic forces on charged particles is not new. In this paper, we consider a rotating non-interacting planar two-dimensional electron gas with a perpendicular uniform magnetic field and investigate the effects of the rotation in the Hall conductiv
    • …
    corecore