12 research outputs found

    Immunological corollary of the pulmonary mycobiome in bronchiectasis:The Cameb study

    Get PDF
    Understanding the composition and clinical importance of the fungal mycobiome was recently identified as a key topic in a “research priorities” consensus statement for bronchiectasis. Patients were recruited as part of the CAMEB study: an international multicentre cross-sectional Cohort of Asian and Matched European Bronchiectasis patients. The mycobiome was determined in 238 patients by targeted amplicon shotgun sequencing of the 18S–28S rRNA internally transcribed spacer regions ITS1 and ITS2. Specific quantitative PCR for detection of and conidial quantification for a range of airway Aspergillus species was performed. Sputum galactomannan, Aspergillus specific IgE, IgG and TARC (thymus and activation regulated chemokine) levels were measured systemically and associated to clinical outcomes. The bronchiectasis mycobiome is distinct and characterised by specific fungal genera, including Aspergillus, Cryptococcus and Clavispora. Aspergillus fumigatus (in Singapore/Kuala Lumpur) and Aspergillus terreus (in Dundee) dominated profiles, the latter associating with exacerbations. High frequencies of Aspergillus-associated disease including sensitisation and allergic bronchopulmonary aspergillosis were detected. Each revealed distinct mycobiome profiles, and associated with more severe disease, poorer pulmonary function and increased exacerbations. The pulmonary mycobiome is of clinical relevance in bronchiectasis. Screening for Aspergillus-associated disease should be considered even in apparently stable patients.MOE (Min. of Education, S’pore)NMRC (Natl Medical Research Council, S’pore)Published versio

    <i>Neisseria</i> species as pathobionts in bronchiectasis

    Get PDF
    Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.Published versio

    Distinct 'Immuno-Allertypes' of Disease and High Frequencies of Sensitisation in Non-Cystic-Fibrosis Bronchiectasis

    Get PDF
    Rationale: Allergic sensitization is associated with poor clinical outcomes in asthma, chronic obstructive pulmonary disease, and cystic fibrosis; however, its presence, frequency, and clinical significance in non–cystic fibrosis bronchiectasis remain unclear. Objectives: To determine the frequency and geographic variability that exists in a sensitization pattern to common and specific allergens, including house dust mite and fungi, and to correlate such patterns to airway immune-inflammatory status and clinical outcomes in bronchiectasis. Methods: Patients with bronchiectasis were recruited in Asia (Singapore and Malaysia) and the United Kingdom (Scotland) (n = 238), forming the Cohort of Asian and Matched European Bronchiectasis, which matched recruited patients on age, sex, and bronchiectasis severity. Specific IgE response against a range of common allergens was determined, combined with airway immune-inflammatory status and correlated to clinical outcomes. Clinically relevant patient clusters, based on sensitization pattern and airway immune profiles (“immunoallertypes”), were determined. Measurements and Main Results: A high frequency of sensitization to multiple allergens was detected in bronchiectasis, exceeding that in a comparator cohort with allergic rhinitis (n = 149). Sensitization was associated with poor clinical outcomes, including decreased pulmonary function and more severe disease. “Sensitized bronchiectasis” was classified into two immunoallertypes: one fungal driven and proinflammatory, the other house dust mite driven and chemokine dominant, with the former demonstrating poorer clinical outcome. Conclusions: Allergic sensitization occurs at high frequency in patients with bronchiectasis recruited from different global centers. Improving endophenotyping of sensitized bronchiectasis, a clinically significant state, and a “treatable trait” permits therapeutic intervention in appropriate patients, and may allow improved stratification in future bronchiectasis research and clinical trials.Ministry of Education (MOE)Ministry of Health (MOH)National Medical Research Council (NMRC)Published versionSupported by the Singapore Ministry of Health’s National Medical Research Council under its Transition Award NMRC/TA/0048/2016 (S.H.C.) and Changi General Hospital Research grant CHF2016.03-P (T.B.L.). The work performed at NUS was supported by the Singapore Ministry of Education Academic Research Fund, SIgN, and National Medical Research Council grants N-154-000-038-001, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, SIgN-06-006, SIgN-08-020, and NMRC/1150/2008 (F.T.C.); J.D.C. is supported by the GSK/British Lung Foundation Chair of Respiratory Research

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Multi-material three dimensional printed models for simulation of bronchoscopy

    No full text
    Background: Bronchoscopy involves exploration of a three-dimensional (3D) bronchial tree environment using just two-dimensional (2D) images, visual cues and haptic feedback. Sound knowledge and understanding of tracheobronchial anatomy as well as ample training experience is mandatory for technical mastery. Although simulated modalities facilitate safe training for inexperienced operators, current commercial training models are expensive or deficient in anatomical accuracy, clinical fidelity and patient representation. The advent of Three-dimensional (3D) printing technology may resolve the current limitations with commercial simulators. The purpose of this report is to develop and test the novel multi-material three-dimensional (3D) printed airway models for bronchoscopy simulation. Methods: Using material jetting 3D printing and polymer amalgamation, human airway models were created from anonymized human thoracic computed tomography images from three patients: one normal, a second with a tumour obstructing the right main bronchus and third with a goitre causing external tracheal compression. We validated their efficacy as airway trainers by expert bronchoscopists. Recruited study participants performed bronchoscopy on the 3D printed airway models and then completed a standardized evaluation questionnaire. Results: The models are flexible, life size, anatomically accurate and patient specific. Five expert respiratory physicians participated in validation of the airway models. All the participants agreed that the models were suitable for training bronchoscopic anatomy and access. Participants suggested further refinement of colour and texture of the internal surface of the airways. Most respondents felt that the models are suitable simulators for tracheal pathology, have a learning value and recommend it to others for use in training. Conclusion: Using material jetting 3D printing to create patient-specific anatomical models is a promising modality of simulation training. Our results support further evaluation of the printed airway model as a bronchoscopic trainer, and suggest that pathological airways may be simulated using this technique.Published versio

    A new therapeutic avenue for bronchiectasis : dry powder inhaler of ciprofloxacin nanoplex exhibits superior ex vivo mucus permeability and antibacterial efficacy to its native ciprofloxacin counterpart

    No full text
    Non-cystic fibrosis bronchiectasis (NCFB) characterized by permanent bronchial dilatation and recurrent infections has been clinically managed by long-term intermittent inhaled antibiotic therapy among other treatments. Herein we investigated dry powder inhaler (DPI) formulation of ciprofloxacin (CIP) nanoplex with mannitol/lactose as the excipient for NCFB therapy. The DPI of CIP nanoplex was evaluated against DPI of native CIP in terms of their (1) dissolution characteristics in artificial sputum medium, (2) ex vivo mucus permeability in sputum from NCFB and healthy individuals, (3) antibacterial efficacy in the presence of sputum against clinical Pseudomonas aeruginosa strains (planktonic and biofilm), and (4) cytotoxicity towards human lung epithelial cells. Despite their similarly fast dissolution rates in sputum, the DPI of CIP nanoplex exhibited superior mucus permeability to the native CIP (5-7 times higher) attributed to its built-in ability to generate highly supersaturated CIP concentration in the sputum. The superior mucus permeability led to the CIP nanoplex's higher antibacterial efficacy (>3 log10 CFU/mL). The DPI of CIP nanoplex exhibited similar cytotoxicity towards the lung epithelial cells as the native CIP indicating its low risk of toxicity. These results established the promising potential of DPI of CIP nanoplex as a new therapeutic avenue for NCFB.MOH (Min. of Health, S’pore)Accepted versio

    Airway 'Resistotypes' and Clinical Outcomes in Bronchiectasis

    Get PDF
    INTRODUCTION: Application of whole-genome shotgun metagenomics to the airway microbiome in bronchiectasis highlights a diverse pool of antimicrobial resistance genes: the 'resistome', the clinical significance of which remains unclear.METHODS: Individuals with bronchiectasis were prospectively recruited into cross-sectional and longitudinal cohorts (n=280) including the international multicentre cross-sectional Cohort of Asian and Matched European Bronchiectasis 2 study (CAMEB 2; n=251) and two independent cohorts, one describing patients experiencing acute exacerbation and a further cohort of patients undergoing P. aeruginosa eradication treatment. Sputum was subjected to metagenomic sequencing and the bronchiectasis resistome evaluated in association with clinical outcomes and underlying host microbiomes.RESULTS: The bronchiectasis resistome features a unique resistance gene profile and elevated counts of aminoglycoside, bicyclomycin, phenicol, triclosan and multi-drug resistance genes. Longitudinally, it exhibits within-patient stability over time and during exacerbations despite between-patient heterogeneity. Proportional differences in baseline resistome profiles including increased macrolide and multi-drug resistance genes associate with shorter intervals to next exacerbation, while distinct resistome archetypes associate with frequent exacerbations, poorer lung function, geographic origin, and the host microbiome. Unsupervised analysis of resistome profiles identified two clinically relevant 'resistotypes' RT1 and RT2, the latter characterized by poor clinical outcomes, increased multi-drug resistance and P. aeruginosa. Successful targeted eradication in P. aeruginosa-colonized individuals mediated reversion from RT2 to RT1, a more clinically favourable resistome profile demonstrating reduced resistance gene diversity.CONCLUSION: The bronchiectasis resistome associates with clinical outcomes, geographic origin, and the underlying host microbiome. Bronchiectasis 'resistotypes' link to clinical disease and are modifiable through targeted antimicrobial therapy.</p
    corecore