5 research outputs found

    The Futures of Bianchi type VII0 cosmologies with vorticity

    Full text link
    We use expansion-normalised variables to investigate the Bianchi type VII0_0 model with a tilted γ\gamma-law perfect fluid. We emphasize the late-time asymptotic dynamical behaviour of the models and determine their asymptotic states. Unlike the other Bianchi models of solvable type, the type VII0_0 state space is unbounded. Consequently we show that, for a general non-inflationary perfect fluid, one of the curvature variables diverges at late times, which implies that the type VII0_0 model is not asymptotically self-similar to the future. Regarding the tilt velocity, we show that for fluids with γ<4/3\gamma<4/3 (which includes the important case of dust, γ=1\gamma=1) the tilt velocity tends to zero at late times, while for a radiation fluid, γ=4/3\gamma=4/3, the fluid is tilted and its vorticity is dynamically significant at late times. For fluids stiffer than radiation (γ>4/3\gamma>4/3), the future asymptotic state is an extremely tilted spacetime with vorticity.Comment: 23 pages, v2:references and comments added, typos fixed, to appear in CQ

    Fluid observers and tilting cosmology

    Get PDF
    We study perfect fluid cosmological models with a constant equation of state parameter γ\gamma in which there are two naturally defined time-like congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e., γ>4/3\gamma>4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e., γ<4/3\gamma < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant
    corecore