77,256 research outputs found

    An agent-based fuzzy cognitive map approach to the strategic marketing planning for industrial firms

    Get PDF
    This is the post-print version of the final paper published in Industrial Marketing Management. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Industrial marketing planning is a typical example of an unstructured decision making problem due to the large number of variables to consider and the uncertainty imposed on those variables. Although abundant studies identified barriers and facilitators of effective industrial marketing planning in practice, the literature still lacks practical tools and methods that marketing managers can use for the task. This paper applies fuzzy cognitive maps (FCM) to industrial marketing planning. In particular, agent based inference method is proposed to overcome dynamic relationships, time lags, and reusability issues of FCM evaluation. MACOM simulator also is developed to help marketing managers conduct what-if scenarios to see the impacts of possible changes on the variables defined in an FCM that represents industrial marketing planning problem. The simulator is applied to an industrial marketing planning problem for a global software service company in South Korea. This study has practical implication as it supports marketing managers for industrial marketing planning that has large number of variables and their cause–effect relationships. It also contributes to FCM theory by providing an agent based method for the inference of FCM. Finally, MACOM also provides academics in the industrial marketing management discipline with a tool for developing and pre-verifying a conceptual model based on qualitative knowledge of marketing practitioners.Ministry of Education, Science and Technology (Korea

    Dynamical Models for the Formation of Elephant Trunks in H II Regions

    Get PDF
    The formation of pillars of dense gas at the boundaries of H II Regions is investigated with hydrodynamical numerical simulations including ionising radiation from a point source. We show that shadowing of ionising radiation by an inhomogeneous density field is capable of forming so-called elephant trunks (pillars of dense gas as in e.g. M16) without the assistance of self-gravity, or of ionisation front and cooling instabilities. A large simulation of a density field containing randomly generated clumps of gas is shown to naturally generate elephant trunks with certain clump configurations. These configurations are simulated in isolation and analysed in detail to show the formation mechanism and determine possible observational signatures. Pillars formed by the shadowing mechanism are shown to have rather different velocity profiles depending on the initial gas configuration, but asymmetries mean that the profiles also vary significantly with perspective, limiting their ability to discriminate between formation scenarios. Neutral and molecular gas cooling are shown to have a strong effect on these results.Comment: 17 pages, 11 figures, MNRAS. Minor revisions: typos corrected, figures re-ordered to match published versio
    corecore