24,565 research outputs found

    Image interpolation using Shearlet based iterative refinement

    Get PDF
    This paper proposes an image interpolation algorithm exploiting sparse representation for natural images. It involves three main steps: (a) obtaining an initial estimate of the high resolution image using linear methods like FIR filtering, (b) promoting sparsity in a selected dictionary through iterative thresholding, and (c) extracting high frequency information from the approximation to refine the initial estimate. For the sparse modeling, a shearlet dictionary is chosen to yield a multiscale directional representation. The proposed algorithm is compared to several state-of-the-art methods to assess its objective as well as subjective performance. Compared to the cubic spline interpolation method, an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images

    Resonant Coherent Phonon Spectroscopy of Single-Walled Carbon Nanotubes

    Get PDF
    Using femtosecond pump-probe spectroscopy with pulse shaping techniques, one can generate and detect coherent phonons in chirality-specific semiconducting single-walled carbon nanotubes. The signals are resonantly enhanced when the pump photon energy coincides with an interband exciton resonance, and analysis of such data provides a wealth of information on the chirality-dependence of light absorption, phonon generation, and phonon-induced band structure modulations. To explain our experimental results, we have developed a microscopic theory for the generation and detection of coherent phonons in single-walled carbon nanotubes using a tight-binding model for the electronic states and a valence force field model for the phonons. We find that the coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We compared our theoretical results with experimental results on mod 2 nanotubes and found that our model provides satisfactory overall trends in the relative strengths of the coherent phonon signal both within and between different mod 2 families. We also find that the coherent phonon intensities are considerably weaker in mod 1 nanotubes in comparison with mod~2 nanotubes, which is also in excellent agreement with experiment.Comment: 21 pages, 22 figure

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the influence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows significant flexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is refined, exposing the fundamental deficiencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach

    Optical studies of carrier and phonon dynamics in Ga_{1-x}Mn_{x}As

    Full text link
    We present a time-resolved optical study of the dynamics of carriers and phonons in Ga_{1-x}Mn_{x}As layers for a series of Mn and hole concentrations. While band filling is the dominant effect in transient optical absorption in low-temperature-grown (LT) GaAs, band gap renormalization effects become important with increasing Mn concentration in Ga_{1-x}Mn_{x}As, as inferred from the sign of the absorption change. We also report direct observation on lattice vibrations in Ga1-xMnxAs layers via reflective electro-optic sampling technique. The data show increasingly fast dephasing of LO phonon oscillations for samples with increasing Mn and hole concentration, which can be understood in term of phonon scattering by the holes.Comment: 13 pages, 3 figures replaced Fig.1 after finding a mistake in previous versio

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Quantum tomographic cryptography with Bell diagonal states: non-equivalence of classical and quantum distillation protocols

    Get PDF
    We present a generalized tomographic quantum key distribution protocol in which the two parties share a Bell diagonal mixed state of two qubits. We show that if an eavesdropper performs a coherent measurement on many quantum ancilla states simultaneously, classical methods of secure key distillation are less effective than quantum entanglement distillation protocols. We also show that certain Bell diagonal states are resistant to any attempt of incoherent eavesdropping.Comment: 9 pages. 2 figures There was an error in the formula 4 (transformation of Bell states). This error does not change the main result of the paper, namely, that quantum distillation is more powerful than classical advantage distillatio

    Asymptotic silence-breaking singularities

    Full text link
    We discuss three complementary aspects of scalar curvature singularities: asymptotic causal properties, asymptotic Ricci and Weyl curvature, and asymptotic spatial properties. We divide scalar curvature singularities into two classes: so-called asymptotically silent singularities and non-generic singularities that break asymptotic silence. The emphasis in this paper is on the latter class which have not been previously discussed. We illustrate the above aspects and concepts by describing the singularities of a number of representative explicit perfect fluid solutions.Comment: 25 pages, 6 figure
    corecore