51 research outputs found

    That's What I Said: Fully-Controllable Talking Face Generation

    Full text link
    The goal of this paper is to synthesise talking faces with controllable facial motions. To achieve this goal, we propose two key ideas. The first is to establish a canonical space where every face has the same motion patterns but different identities. The second is to navigate a multimodal motion space that only represents motion-related features while eliminating identity information. To disentangle identity and motion, we introduce an orthogonality constraint between the two different latent spaces. From this, our method can generate natural-looking talking faces with fully controllable facial attributes and accurate lip synchronisation. Extensive experiments demonstrate that our method achieves state-of-the-art results in terms of both visual quality and lip-sync score. To the best of our knowledge, we are the first to develop a talking face generation framework that can accurately manifest full target facial motions including lip, head pose, and eye movements in the generated video without any additional supervision beyond RGB video with audio

    In Reply

    Full text link
    L’agentivité corporelle est une nouvelle définition de l’autosanté même si une illusion capitaliste nous fait croire que le corps individuel pouvait être une possibilité de révolutionner de notre intimité et de notre construction physique. L’agentivité est peut-être une illusion du point de vue de la régulation biopolitique des populations : le bio-pouvoir propose le soi corporel comme un moyen de maintenir une domination pan-optique par l’entretien de soi-même. Mais l’internalisation du bio-pouvoir transforme le patient en agent de sa propre santé : ainsi le bio-pouvoir interne est exercé par chaque entraîneur, performativité et performance son alors confondues dans un même projet, l’auto-éducation corporelle de soi.The body agentivity is a new definition of self health even if is an capitalistic illusion to believe us that the individual body could be the possibility of revolution in intimacy and in the physical self’s building. This agentivity is perhaps an illusion in the point of view of biopolitic regulation of population: the bio-power proposes the self body control like a mean to maintain the panoptic domination by the body-work of man or woman. But the internalisation of biopower by the patient transform him in agent of his self health: like the internal biopower is exerced by each body-coach, performativity and performance are cofounded in the same project, the auto-education of self

    Efficiency Bound of Radiative Wireless Power Transmission Using Practical Antennas

    No full text

    Hypertonic sodium choloride and mannitol induces COX-2 via different signaling pathways in mouse cortical collecting duct M-1 cells

    No full text
    The kidney cortical collecting duct is an important site for the maintenance of sodium balance. Previous studies have shown that, in renal medullary cells, hypertonic stress induces expression of cyclooxygenase-2 (COX-2) via NF-kappa B activation, but little is known about COX-2 expression in response to hypertonicity in the cortical collecting duct. Therefore, we examined the mechanism of hypertonic induction of COX-2 in M-1 cells derived from mouse cortical collecting duct. Induction of COX-2 protein was detected within 6 h of treatment with hypertonic sodium chloride. The treatment also increased COX-2 mRNA accumulation in a cycloheximide-independent manner, suggesting that ongoing protein synthesis is not required for COX-2 induction. Using reporter plasmids containing 0.2-, 0.3-, and 1.5-kb fragments of the COX-2 promoter, we found that hypertonic induction of COX-2 was due to an increase in promoter activity. The COX-2-inductive effect of hypertonicity was inhibited by SB203580, indicating that the effect is mediated by p38 MAPK. Since p38 MAPK can activate NF-kappa B, we made point mutations in the NF-kappa B binding site within the COX-2 promoter. The mutations did not block the induction of COX-2 promoter activity by hypertonic sodium chloride, and hypertonic sodium chloride failed to activate NF-kappa B binding site-driven reporter gene constructs. In contrast, hypertonic mannitol activated NF-kappa B, indicating that hypertonic mannitol and hypertonic sodium chloride activate COX-2 by different mechanisms. Thus, induction of COX-2 expression in M-1 cells by hypertonic sodium chloride does not involve activation of NF-kappa B. Furthermore, the signal transduction pathways that respond to hypertonic stress vary for different osmolytes in cortical collecting duct cells. (c) 2007 Elsevier Inc. All rights reserved

    A Clutter Rejection Technique Using a Delay-Line for Wall-Penetrating FMCW Radar

    No full text

    CeRNA Network Analysis Representing Characteristics of Different Tumor Environments Based on 1p/19q Codeletion in Oligodendrogliomas

    No full text
    Oligodendroglioma (OD) is a subtype of glioma occurring in the central nervous system. The 1p/19q codeletion is a prognostic marker of OD with an isocitrate dehydrogenase (IDH) mutation and is associated with a clinically favorable overall survival (OS); however, the exact underlying mechanism remains unclear. Long non-coding RNAs (lncRNAs) have recently been suggested to regulate carcinogenesis and prognosis in cancer patients. Here, we performed in silico analyses using low-grade gliomas from datasets obtained from The Cancer Genome Atlas to investigate the effects of ceRNA with 1p/19q codeletion on ODs. Thus, we selected modules of differentially expressed genes that were closely related to 1p/19q codeletion traits using weighted gene co-expression network analysis and constructed 16 coding RNA–miRNA–lncRNA networks. The ceRNA network participated in ion channel activity, insulin secretion, and collagen network and extracellular matrix (ECM) changes. In conclusion, ceRNAs with a 1p/19q codeletion can create different tumor microenvironments via potassium ion channels and ECM composition changes; furthermore, differences in OS may occur. Moreover, if extrapolated to gliomas, our results can provide insights into the consequences of identical gene expression, indicating the possibility of tracking different biological processes in different subtypes of glioma

    Separator Dependency on Cycling Stability of Lithium Metal Batteries Under Practical Conditions

    No full text
    Development of practical lithium (Li) metal batteries (LMBs) remains challenging despite promises of Li metal anodes (LMAs), owing to Li dendrite formation and highly reactive surface nature. Polyolefin separators used in LMBs may undergo severe mechanical and chemical deterioration when contacting with LMAs. To identify the best polyolefin separator for LMBs, this study investigated the separator-deterministic cycling stability of LMBs under practical conditions, and redefined the key influencing factors, including pore structure, mechanical stability, and chemical affinity, using 12 different commercial separators, including polyethylene (PE), polypropylene (PP), and coated separators. At extreme compression triggered by LMA swelling, isotropic stress release by balancing the machine direction and transverse direction tensile strengths was found to be crucial for mitigating cell short-circuiting. Instead of PP separators, a PE separator that possesses a high elastic modulus and a highly connected pore structure can uniformly regulate LMA swelling. The ceramic coating reinforced short-circuiting resistance, while the cycling efficiency degraded rapidly owing to the detrimental interactions between ceramics and LMAs. This study identified the design principle of separators for practical LMBs with respect to mechanical stability and chemical affinity toward LMAs by elucidating the impacts of separator modification on the cycling performance.FALS

    Reaction chemistry in rechargeable Li-O-2 batteries

    No full text
    The seemingly simple reaction of Li-O-2 batteries involving lithium and oxygen makes this chemistry attractive for high-energy-density storage systems; however, achieving this reaction in practical rechargeable Li-O-2 batteries has proven difficult. The reaction paths leading to the final Li2O2 discharge products can be greatly affected by the operating conditions or environment, which often results in major side reactions. Recent research findings have begun to reveal how the reaction paths may be affected by the surrounding conditions and to uncover the factors contributing to the difficulty in achieving the reactions of lithium and oxygen. This progress report describes the current state of understanding of the electrode reaction mechanisms in Li-O-2 batteries; the factors that affect reaction pathways; and the effect of cell components such as solvents, salts, additives, and catalysts on the discharge product and its decomposition during charging. This comprehensive review of the recent progress in understanding the reaction chemistry of the Li-O-2 system will serve as guidelines for future research and aid in the development of reliable high-energy-density rechargeable Li-O-2 batteries.

    Maximal surgical resection and adjuvant surgical technique to prolong the survival of adult patients with thalamic glioblastoma.

    No full text
    The importance of maximal resection in the treatment of glioblastoma (GBM) has been reported in many studies, but maximal resection of thalamic GBM is rarely attempted due to high rate of morbidity and mortality. The purpose of this study was to investigate the role of surgical resection in adult thalamic glioblastoma (GBM) treatment and to identify the surgical technique of maximal safety resection. In case of suspected thalamic GBM, surgical resection is the treatment of choice in our hospital. Biopsy was considered when there was ventricle wall enhancement or multiple enhancement lesion in a distant location. Navigation magnetic resonance imaging, diffuse tensor tractography imaging, tailed bullets, and intraoperative computed tomography and neurophysiologic monitoring (transcranial motor evoked potential and direct subcortical stimulation) were used in all surgical resection cases. The surgical approach was selected on the basis of the location of the tumor epicenter and the adjacent corticospinal tract. Among the 42 patients, 19 and 23 patients underwent surgical resection and biopsy, respectively, according to treatment strategy criteria. As a result, the surgical resection group exhibited a good response with overall survival (OS) (median: 676 days, p < 0.001) and progression-free survival (PFS) (median: 328 days, p < 0.001) compared with each biopsy groups (doctor selecting biopsy group, median OS: 240 days and median PFS: 134 days; patient selecting biopsy group, median OS: 212 days and median PFS: 118 days). The surgical resection groups displayed a better prognosis compared to that of the biopsy groups for both the O6-methylguanine-DNA methyltransferase unmethylated (log-rank p = 0.0035) or methylated groups (log-rank p = 0.021). Surgical resection was significantly associated with better prognosis (hazard ratio: 0.214, p = 0.006). In case of thalamic GBM without ventricle wall-enhancing lesion or multiple lesions, maximal surgical resection above 80% showed good clinical outcomes with prolonged the overall survival compared to biopsy. It is helpful to use adjuvant surgical techniques of checking intraoperative changes and select the appropriate surgical approach for reducing the surgical morbidity
    corecore