703 research outputs found

    Calibration of Distributionally Robust Empirical Optimization Models

    Full text link
    We study the out-of-sample properties of robust empirical optimization problems with smooth ϕ\phi-divergence penalties and smooth concave objective functions, and develop a theory for data-driven calibration of the non-negative "robustness parameter" δ\delta that controls the size of the deviations from the nominal model. Building on the intuition that robust optimization reduces the sensitivity of the expected reward to errors in the model by controlling the spread of the reward distribution, we show that the first-order benefit of ``little bit of robustness" (i.e., δ\delta small, positive) is a significant reduction in the variance of the out-of-sample reward while the corresponding impact on the mean is almost an order of magnitude smaller. One implication is that substantial variance (sensitivity) reduction is possible at little cost if the robustness parameter is properly calibrated. To this end, we introduce the notion of a robust mean-variance frontier to select the robustness parameter and show that it can be approximated using resampling methods like the bootstrap. Our examples show that robust solutions resulting from "open loop" calibration methods (e.g., selecting a 90%90\% confidence level regardless of the data and objective function) can be very conservative out-of-sample, while those corresponding to the robustness parameter that optimizes an estimate of the out-of-sample expected reward (e.g., via the bootstrap) with no regard for the variance are often insufficiently robust.Comment: 51 page

    Critical currents for vortex defect motion in superconducting arrays

    Full text link
    We study numerically the motion of vortices in two-dimensional arrays of resistively shunted Josephson junctions. An extra vortex is created in the ground states by introducing novel boundary conditions and made mobile by applying external currents. We then measure critical currents and the corresponding pinning energy barriers to vortex motion, which in the unfrustrated case agree well with previous theoretical and experimental findings. In the fully frustrated case our results also give good agreement with experimental ones, in sharp contrast with the existing theoretical prediction. A physical explanation is provided in relation with the vortex motion observed in simulations.Comment: To appear in Physical Review

    Dynamic transition and Shapiro-step melting in a frustrated Josephson-junction array

    Full text link
    We consider a two-dimensional fully frustrated Josephson-junction array driven by combined direct and alternating currents. Interplay between the mode locking phenomenon, manifested by giant Shapiro steps in the current-voltage characteristics, and the dynamic phase transition is investigated at finite temperatures. Melting of Shapiro steps due to thermal fluctuations is shown to be accompanied by the dynamic phase transition, the universality class of which is also discussed

    Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity

    Get PDF
    The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified red-crowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH, RPA1, PHAX, HNMT, HS2ST1, PPCDC, PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species

    Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    Get PDF
    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.Prostate Cancer Foundation (Award in Nanotherapeutics)National Institutes of Health (U.S.) (Grant EB015419)National Institutes of Health (U.S.) (Grant CA119349

    Anti-Inflammatory Effects of Inonotus obliquus in Colitis Induced by Dextran Sodium Sulfate

    Get PDF
    A total of 28 male BALB/c mice (average weight 20.7 ± 1.6 g) were divided into 4 treatment groups and fed a commercial diet (A), a commercial diet + induced colitis by dextran sodium sulfate (DSS) (B), Inonotus obliquus (IO) administration (C), and IO administration + induced colitis by DSS (D). IO treatment (C, D) decreased the expression of tumor necrosis factor (TNF)-α and signal transducers and activators of transcription (STAT)1 compared to those of the colitis induced group (B). The expressions of IL-4 and STAT6 were decreased in group D compared to the colitis induced group (B). The serum immunoglobulin (Ig)E level decreased in IO treatment groups (C, D) compared to no IO treatment groups (A and B) although there was no significant difference between the IO treatment groups. Extract from IO itself had a weak cytotoxic effect on murine macrophage cell line (RAW264.7 cells). Extract from IO inhibited lipopolysaccharide- (LPS-) induced, TNF-α, STAT1, pSTAT1, STAT6, and pSTAT6 production in RAW264.7 cells

    Long-term Results of Primary Total Knee Arthroplasty with and without Patellar Resurfacing

    Get PDF
    Among patients that underwent total knee arthroplasty from June, 1990 to January, 1999, 61 cases (44 patients) that could be followed for more than 10 years were included in this study. The patients were divided into a patellar retention group and a patellar resurfacing group, and were compared with regard to their clinical and radiological outcomes. In patients undergoing primary TKA, a selective patellar resurfacing protocol was used. The indications for patellar retention were a small patella, nearly normal articular cartilage, minimal preoperative patellofemoral pain, poor patellar bone quality, and young patient age. When patellar retention was performed, osteophytes of the patella were removed and marginal electrocauterization was carried out. There were 25 cases (20 patients) in the patellar retention group and 36 cases (29 patients) in the patellar resurfacing group. The mean follow-up period was 140.7 months in the patellar retention group and 149.0 months in the patellar resurfacing group. The selective patellar resurfacing with total knee arthroplasty had a favorable outcome;there were a significant difference noted between the 2 groups in the functional scores, which showed better outcomes in the patellar resurfacing group than in the patellar retention group

    Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins

    Get PDF
    Effective delivery of therapeutic proteins is a formidable challenge. Herein, using a unique polymer family with a wide-ranging set of cationic and hydrophobic features, we developed a novel nanoparticle (NP) platform capable of installing protein ligands on the particle surface and simultaneously carrying therapeutic proteins inside by a self-assembly procedure. The loaded therapeutic proteins (e.g., insulin) within the NPs exhibited sustained and tunable release, while the surface-coated protein ligands (e.g., transferrin) were demonstrated to alter the NP cellular behaviors. In vivo results revealed that the transferrin-coated NPs can effectively be transported across the intestinal epithelium for oral insulin delivery, leading to a notable hypoglycemic response.National Institutes of Health (U.S.) (Grants EB015419, R00CA160350, and CA151884)Prostate Cancer Foundation (Challenge Award)National Research Foundation of Korea (Grant K1A1A2048701)David H. Koch Institute for Integrative Cancer Research at MIT. Prostate Cancer Foundation Program in Cancer NanotherapeuticsNational Natural Science Foundation (China) (Grant 81173010
    corecore