1,277 research outputs found

    Accurate volume alignment of arbitrarily oriented tibiae based on a mutual attention network for osteoarthritis analysis

    Get PDF
    Damage to cartilage is an important indicator of osteoarthritis progression, but manual extraction of cartilage morphology is time-consuming and prone to error. To address this, we hypothesize that automatic labeling of cartilage can be achieved through the comparison of contrasted and non-contrasted Computer Tomography (CT). However, this is non-trivial as the pre-clinical volumes are at arbitrary starting poses due to the lack of standardized acquisition protocols. Thus, we propose an annotation-free deep learning method, D-net, for accurate and automatic alignment of pre- and post-contrasted cartilage CT volumes. D-Net is based on a novel mutual attention network structure to capture large-range translation and full-range rotation without the need for a prior pose template. CT volumes of mice tibiae are used for validation, with synthetic transformation for training and tested with real pre- and post-contrasted CT volumes. Analysis of Variance (ANOVA) was used to compare the different network structures. Our proposed method, D-net, achieves a Dice coefficient of 0.87, and significantly outperforms other state-of-the-art deep learning models, in the real-world alignment of 50 pairs of pre- and post-contrasted CT volumes when cascaded as a multi-stage network

    Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System

    Get PDF
    Dry reforming of methane (DRM) has been emerging as a viable solution to achieving carbon neutrality enhanced by the Paris Agreement as it converts the greenhouse gases of CO2 and CH4 into industrially useful syngas. However, there have been limited studies on the DRM catalyst under mild operating conditions with a high dilution gas ratio due to their deactivation from carbon coking and metal sintering. Herein, we apply the triple-phase boundary (TPB) concept to DRM catalyst via exsolution phenomenon that can secure elongated TPB by controlling the Fe-doping ratio in perovskite oxide. Remarkably, the exsolved catalyst with prolongated TPB shows exceptional CO2 and CH4 conversion rates of 95.9 % and 91.6 %, respectively, stable for 1000 hours under a dilution-free system. DFT calculations confirm that the Lewis acid of support and Lewis base of metal at the TPB promote the adsorption of reactants, resulting in lowering the overall CO2 dissociation and CH4 dehydrogenation energy

    Crowdsourced mapping of unexplored target space of kinase inhibitors

    Get PDF
    Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed

    Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels

    Get PDF
    Large-scale meta-analyses of genome-wide association studies (GWAS) have identified >175 loci associated with fasting cholesterol levels, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). With differences in linkage disequilibrium (LD) structure and allele frequencies between ancestry groups, studies in additional large samples may detect new associations. We conducted staged GWAS meta-analyses in up to 69,414 East Asian individuals from 24 studies with participants from Japan, the Philippines, Korea, China, Singapore, and Taiwan. These meta-analyses identified (P < 5 × 10-8) three novel loci associated with HDL-C near CD163-APOBEC1 (P = 7.4 × 10-9), NCOA2 (P = 1.6 × 10-8), and NID2-PTGDR (P = 4.2 × 10-8), and one novel locus associated with TG near WDR11-FGFR2 (P = 2.7 × 10-10). Conditional analyses identified a second signal near CD163-APOBEC1. We then combined results from the East Asian meta-analysis with association results from up to 187,365 European individuals from the Global Lipids Genetics Consortium in a trans-ancestry meta-analysis. This analysis identified (log10Bayes Factor ≥6.1) eight additional novel lipid loci. Among the twelve total loci identified, the index variants at eight loci have demonstrated at least nominal significance with other metabolic traits in prior studies, and two loci exhibited coincident eQTLs (P < 1 × 10-5) in subcutaneous adipose tissue for BPTF and PDGFC. Taken together, these analyses identified multiple novel lipid loci, providing new potential therapeutic targets
    corecore