4 research outputs found
Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO<sub>2</sub> monitoring
Due to rapid urbanization worldwide, monitoring the concentration of nitrogen dioxide (NO2), which causes cardiovascular and respiratory diseases, has attracted considerable attention. Developing real-time sensors to detect parts-per-billion (ppb)-level NO2 remains challenging due to limited sensitivity, response, and recovery characteristics. Herein, we report a hybrid structure of Cu3HHTP2, 2D semiconducting metal-organic frameworks (MOFs), and laser-induced graphene (LIG) for high-performance NO2 sensing. The unique hierarchical pore architecture of LIG@Cu3HHTP2 promotes mass transport of gas molecules and takes full advantage of the large surface area and porosity of MOFs, enabling highly rapid and sensitive responses to NO2. Consequently, LIG@Cu3HHTP2 shows one of the fastest responses and lowest limit of detection at room temperature compared with state-of-the-art NO2 sensors. Additionally, by employing LIG as a growth platform, flexibility and patterning strategies are achieved, which are the main challenges for MOF-based electronic devices. These results provide key insight into applying MOFtronics as high-performance healthcare devices. NO2 monitoring is important in urban areas where pollutant levels are typically higher. Here authors present a hybrid structure of laser-induced graphene and Cu3HHTP2, a 2D semiconducting MOF, for highly sensitive and rapid detection of NO2 at the parts-per-billion level.Y
Laser-Induced and MOF-Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature
Highlights Metal oxide and carbon hybrids (MOx/C) were micropatterned very rapidly and energy efficiently by direct laser writing. Metal-organic framework was the ideal precursor for fabricating homogeneous MOx/C hybrids due to regularly spaced metal ions and organic ligands. The fabricated sensor not only demonstrated broad-range gas sensing capability for ethanol gas (170-3,400 ppm) but also exhibited exceptional sensitivity, rapid response and recovery, selectivity, linearity, and thermal stability
Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO2 monitoring
Abstract Due to rapid urbanization worldwide, monitoring the concentration of nitrogen dioxide (NO2), which causes cardiovascular and respiratory diseases, has attracted considerable attention. Developing real-time sensors to detect parts-per-billion (ppb)-level NO2 remains challenging due to limited sensitivity, response, and recovery characteristics. Herein, we report a hybrid structure of Cu3HHTP2, 2D semiconducting metal-organic frameworks (MOFs), and laser-induced graphene (LIG) for high-performance NO2 sensing. The unique hierarchical pore architecture of LIG@Cu3HHTP2 promotes mass transport of gas molecules and takes full advantage of the large surface area and porosity of MOFs, enabling highly rapid and sensitive responses to NO2. Consequently, LIG@Cu3HHTP2 shows one of the fastest responses and lowest limit of detection at room temperature compared with state-of-the-art NO2 sensors. Additionally, by employing LIG as a growth platform, flexibility and patterning strategies are achieved, which are the main challenges for MOF-based electronic devices. These results provide key insight into applying MOFtronics as high-performance healthcare devices
Unlocking performance potential of two-dimensional SnS2 transistors with solution-processed high-k Y:HfO2 film and semimetal bismuth contact
Two-dimensional (2D) tin disulfide (SnS2) is emerging as a viable channel material for high-performance field-effect transistors (FET) with high intrinsic mobility. To implement a high-performance two-dimensional SnS2 FET, high field-effect mobility (μFE), steep subthreshold swing (SS), high on-current value (Ion), and high on/off ratio (Ion/Ioff) must be realized. To improve these parameters, we first fabricated a high-k (∼30.5) yttrium-doped hafnium dioxide (Y:HfO2) film through a solution process to suppress Coulomb electron scattering, and to enhance the semiconductor-dielectric interface with an efficient metal–oxygen framework and a very smooth (root mean square = 0.29 nm) surface. Second, we induced Fermi level depinning by introducing a semimetal bismuth (Bi) contact with a low density of states (DOS) at the Fermi level to suppress the metal-induced gap state (MIGS). Through these two strategies, the SnS2 FET obtained high μFE (60.5 cm2V-1s−1), the SS theoretical limit of 60 mV/dec, negligible Schottky barrier height, high normalized on-current (IonL/W) of 90.6 μA, and high Ion/Ioff of 3 × 107, demonstrating that SnS2 can be re-evaluated as a potentially effective 2D channel material. © 2023 Elsevier B.V.FALS