647 research outputs found

    PHP12 THE PUBLIC'S PREFERENCE ON THE PRIORITIES IN HEALTH CARE

    Get PDF
    No abstract available

    Development of an electronic medical report delivery system to 3G GSM mobile (cellular) phones for a medical imaging department

    Get PDF
    Author name used in this publication: Dagan FengAuthor name used in this publication: Michael FulhamRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    PHP66 EVALUATION OF THE FIRST-YEAR OPERATION OF KOREAN POSITIVE LIST SYSTEM FOR PHARMACEUTICAL REIMBURSEMENT

    Get PDF

    HCMV carriage in the elderly diminishes anti-viral functionality of the adaptive immune response resulting in virus replication at peripheral sites.

    Get PDF
    Human cytomegalovirus (HCMV) infection and periodic reactivation is, generally, well controlled by adaptative immune responses in the healthy. In older people, overt HCMV disease is rarely seen despite the association of HCMV with increased risk of mortality; evidence from studies of unwell aged populations suggest that HCMV seropositivity is an important co-morbidity factor. HCMV genomes have been detected in urine from older donors, suggesting that the immune response prevents systemic disease but possibly immunomodulation due to lifelong viral carriage may alter its efficacy at peripheral tissue sites. Previously we have demonstrated that there were no age-related expansions of T cell responses to HCMV or increase in latent viral carriage with age and these T cells produced anti-viral cytokines and viremia was very rarely detected. To investigate the efficacy of anti-HCMV responses with increasing age, we used an in vitro Viral Dissemination Assay (VDA) using autologous dermal fibroblasts to determine the anti-viral effector capacity of total PBMC, as well as important subsets (T cells, NK cells). In parallel we assessed components of the humoral response (antibody neutralization) and combined this with qPCR detection of HCMV in blood, saliva and urine in a cohort of young and old donors. Consistent with previous studies, we again show HCMV specific cIL-10, IFNΞ³ and TNFΞ± T cell responses to peptides did not show an age-related defect. However, assessment of direct anti-viral cellular and antibody-mediated adaptive immune responses using the VDA shows that older donors are significantly less able to control viral dissemination in an in vitro assay compared to young donors. Corroborating this observation, we detected viral genomes in saliva samples only from older donors, these donors had a defect in cellular control of viral spread in our in vitro assay. Phenotyping of fibroblasts used in this study shows expression of a number of checkpoint inhibitor ligands which may contribute to the defects observed. The potential to therapeutically intervene in checkpoint inhibitor pathways to prevent HCMV reactivation in the unwell aged is an exciting avenue to explore

    Development of an Electronic Medical Report Delivery System to 3G GSM Mobile (Cellular) Phones for a Medical Imaging Department

    Full text link
    Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.Department of Electronic and Information EngineeringAuthor name used in this publication: Dagan FengAuthor name used in this publication: Michael FulhamRefereed conference pape

    Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection

    Get PDF
    Little is known about the innate immune response to severe acute respiratory syndrome (SARS) coronavirus (CoV) infection. Mannose-binding lectin (MBL), a key molecule in innate immunity, functions as an ante-antibody before the specific antibody response. Here, we describe a case-control study that included 569 patients with SARS and 1188 control subjects and used in vitro assays to investigate the role that MBL plays in SARS-CoV infection. The distribution of MBL gene polymorphisms was significantly different between patients with SARS and control subjects, with a higher frequency of haplotypes associated with low or deficient serum levels of MBL in patients with SARS than in control subjects. Serum levels of MBL were also significantly lower in patients with SARS than in control subjects. There was, however, no association between MBL genotypes, which are associated with low or deficient serum levels of MBL, and mortality related to SARS. MBL could bind SARS-CoV in a dose- and calcium-dependent and mannan-inhibitable fashion in vitro, suggesting that binding is through the carbohydrate recognition domains of MBL. Furthermore, deposition of complement C4 on SARS-CoV was enhanced by MBL. Inhibition of the infectivity of SARS-CoV by MBL in fetal rhesus kidney cells (FRhK-4) was also observed. These results suggest that MBL contributes to the first-line host defense against SARS-CoV and that MBL deficiency is a susceptibility factor for acquisition of SARS. Β© 2005 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Full text link
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    Immune enhancement by novel vaccine adjuvants in autoimmune-prone NZB/W F1 mice: relative efficacy and safety

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaccines have profoundly impacted global health although concerns persist about their potential role in autoimmune or other adverse reactions. To address these concerns, vaccine components like immunogens and adjuvants require critical evaluation not only in healthy subjects but also in those genetically averse to vaccine constituents. Evaluation in autoimmune-prone animal models of adjuvants is therefore important in vaccine development. The objective here was to assess the effectiveness of experimental adjuvants: two phytol-derived immunostimulants PHIS-01 (phytanol) and PHIS-03 (phytanyl mannose), and a new commercial adjuvant from porcine small intestinal submucosa (SIS-H), relative to a standard adjuvant alum. Phytol derivatives are hydrophobic, oil-in water diterpenoids, while alum is hydrophilic, and SIS is essentially a biodegradable and collagenous protein cocktail derived from extracellular matrices.</p> <p>Results</p> <p>We studied phthalate -specific and cross-reactive anti-DNA antibody responses, and parameters associated with the onset of autoimmune disorders. We determined antibody isotype and cytokine/chemokine milieu induced by the above experimental adjuvants relative to alum. Our results indicated that the phytol-derived adjuvant PHIS-01 exceeded alum in enhancing anti-phthalate antibody without much cross reactivity with ds-DNA. Relatively, SIS and PHIS-03 proved less robust, but they were also less inflammatory. Interestingly, these adjuvants facilitated isotype switching of anti-hapten, but not of anti-DNA response. The current study reaffirms our earlier reports on adjuvanticity of phytol compounds and SIS-H in non autoimmune-prone BALB/c and C57BL/6 mice. These adjuvants are as effective as alum also in autoimmune-prone NZB/WF1 mice, and they have little deleterious effects.</p> <p>Conclusion</p> <p>Although all adjuvants tested impacted cytokine/chemokine milieu in favor of Th1/Th2 balance, the phytol compounds fared better in reducing the onset of autoimmune syndromes. However, SIS is least inflammatory among the adjuvants evaluated.</p

    Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.

    Get PDF
    Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-Ξ³ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-Ξ± and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans

    Virtual interactive musculoskeletal system (VIMS) in orthopaedic research, education and clinical patient care

    Get PDF
    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation
    • …
    corecore