731 research outputs found

    A two measure model of dark energy and dark matter

    Full text link
    In this work we construct a unified model of dark energy and dark matter. This is done with the following three elements: a gravitating scalar field, phi with a non-conventional kinetic term, as in the string theory tachyon; an arbitrary potential, V(phi); two measures -- a metric measure (sqrt{-g}) and a non-metric measure (Phi). The model has two interesting features: (i) For potentials which are unstable and would give rise to tachyonic scalar field, this model can stabilize the scalar field. (ii) The form of the dark energy and dark matter that results from this model is fairly insensitive to the exact form of the scalar field potential.Comment: 8 pages,no figures, revtex, typos corrected to match published versio

    Severity-Stratified Discrete Choice Experiment Designs for Health State Evaluations

    Get PDF
    __Background:__ Discrete choice experiments (DCEs) are increasingly used for health state valuations. However, the values derived from initial DCE studies vary widely. We hypothesize that these findings indicate the presence of unknown sources of bias that must be recognized and minimized. Against this background, we studied whether values derived from a DCE are sensitive to how well the DCE design spans the severity range. __Methods:__ We constructed an experiment involving three variants of DCE tasks for health state valuation: standard DCE, DCE-death, and DCE-duration. For each type of DCE, an experimental design was generated under two different conditions, enabling a comparison of health state values derived from current best practice Bayesian efficient DCE designs with values derived from ‘severity-stratified’ designs that control for coverage of the severity range in health state selection. About 3000 respondents participated in the study and were randomly assigned to one of the six study arms. __Results:__ Imposing the severity-stratified restriction had a large effect on health states sampled for the DCE-duration approach. The unstratified efficient design returned a skewed distribution of selected health states, and this introduced bias. The choice probability of bad health states was underestimated, and time trade-offs to avoid bad states were overestimated, resulting in too low values. Imposing the same restriction had limited effect in the DCE-death approach and standard DCE. __Conclusion:__ Variation in DCE-derived values can be partially explained by differences in how well selected health states spanned the severity range. Imposing a ‘severity stratification’ on DCE-duration designs is a validity requirement

    The ^4He trimer as an Efimov system

    Full text link
    We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4^4He three-atomic system.Comment: Review article for a special issue of the Few-Body Systems journal devoted to Efimov physic

    New mechanism to cross the phantom divide

    Full text link
    Recently, type Ia supernovae data appear to support a dark energy whose equation of state ww crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in the gravity with an additional inverse power-law term of Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. Some analytical solutions with w<1w<-1 or w>1w>-1 are obtained. A minimal coupled scalar with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are investigated via numerical methods, respectively. All these potentials lead to the crossing behavior. We show that it is a robust result which is hardly dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the published versio

    Non-linear dark energy clustering

    Full text link
    We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10-15 per cent for small scales.Comment: 33 pages, 7 figures. Improved presentation. References added. Matches published version in JCA

    Scaling limit of virtual states of triatomic systems

    Full text link
    For a system with three identical atoms, the dependence of the ss-wave virtual state energy on the weakly bound dimer and trimer binding energies is calculated in a form of a universal scaling function. The scaling function is obtained from a renormalizable three-body model with a pairwise Dirac-delta interaction. It was also discussed the threshold condition for the appearance of the trimer virtual state.Comment: 9 pages, 3 figure

    Non-minimally coupled dark matter: effective pressure and structure formation

    Full text link
    We propose a phenomenological model in which a non-minimal coupling between gravity and dark matter is present in order to address some of the apparent small scales issues of \lcdm model. When described in a frame in which gravity dynamics is given by the standard Einstein-Hilbert action, the non-minimal coupling translates into an effective pressure for the dark matter component. We consider some phenomenological examples and describe both background and linear perturbations. We show that the presence of an effective pressure may lead these scenarios to differ from \lcdm at the scales where the non-minimal coupling (and therefore the pressure) is active. In particular two effects are present: a pressure term for the dark matter component that is able to reduce the growth of structures at galactic scales, possibly reconciling simulations and observations; an effective interaction term between dark matter and baryons that could explain observed correlations between the two components of the cosmic fluid within Tully-Fisher analysis.Comment: 18 pages, 6 figures, references added. Published in JCA

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors

    Phantom Divide Crossing with General Non-minimal Kinetic Coupling

    Full text link
    We propose a model of dark energy consists of a single scalar field with a general non-minimal kinetic couplings to itself and to the curvature. We study the cosmological dynamics of the equation of state in this setup. The coupling terms have the form ξ1Rf(ϕ)μϕμϕ\xi_{1} R f(\phi)\partial_{\mu}\phi\partial^{\mu}\phi and ξ2Rμνf(ϕ)μϕνϕ\xi_{2} R_{\mu\nu}f(\phi)\partial^{\mu}\phi\partial^{\nu}\phi where ξ1\xi_{1} and ξ2\xi_{2} are coupling parameters and their dimensions depend on the type of function f(ϕ)f(\phi). We obtain the conditions required for phantom divide crossing and show numerically that a cosmological model with general non-minimal derivative coupling to the scalar and Ricci curvatures can realize such a crossing.Comment: 12 pages, 4 figures. Accepted for publication in Gen. Rel. Grav. arXiv admin note: substantial text overlap with arXiv:1105.4967, arXiv:1201.1627, and with arXiv:astro-ph/0610092 by other author
    corecore