1,822 research outputs found

    Viable stretchable plasmonics based on unidirectional nanoprisms

    Get PDF
    Well-defined ordered arrays of plasmonic nanostructures were fabricated on stretchable substrates and tunable plasmon-coupling-based sensing properties were comprehensively demonstrated upon extension and contraction. Regular nanoprism patterns consisting of Ag, Au and Ag/Au bilayers were constructed on the stretchable polydimethylsiloxane substrate. The nanoprisms had the same orientation over the entire substrate (3 x 3 cm(2)) via metal deposition on a single-crystal microparticle monolayer assembly. The plasmonic sensor based on the Ag/Au bilayer showed a 6-fold enhanced surface enhanced Raman scattering signal under 20% uniaxial extension, whereas a 3-fold increase was observed upon 6% contraction, compared with the Au nanoprism arrays. The sensory behaviors were corroborated by finite-difference time-domain simulation, demonstrating the tunable electromagnetic field enhancement effect via the localized surface plasmon resonance coupling. The advanced flexible plasmonic-coupling-based devices with tunable and quantifiable performance herein suggested are expected to unlock promising potential in practical bio-sensing, biotechnological applications and optical devices.11Ysciescopu

    Harvesting electrical energy using plasmon-enhanced light pressure in a platinum cut cone

    Get PDF
    We have designed a method of harvesting electrical energy using plasmon-enhanced light pressure. A device was fabricated as a cut cone structure that optimizes light collection so that the weak incident light pressure can be sufficiently enhanced inside the cut cone to generate electrical energy. An increase in the device's current output is a strong indication that the pressure of incident light has been enhanced by the surface plasmons on a platinum layer inside the cut cone. The electrical energy harvested in a few minutes by irradiating pulsed laser light on a single micro device was possible to illuminate a blue LED

    Tumor Suppressor CYLD Acts as a Negative Regulator for Non-Typeable Haemophilus influenza-Induced Inflammation in the Middle Ear and Lung of Mice

    Get PDF
    Non-typeable Haemophilus influenza (NTHi) is an important human pathogen causing respiratory tract infections in both adults and children. NTHi infections are characterized by inflammation, which is mainly mediated by nuclear transcription factor kappaB (NF-κB)-dependent production of inflammatory mediators. The deubiquitinating enzyme cylindromatosis (CYLD), loss of which was originally reported to cause a benign human syndrome called cylindromatosis, has been identified as a key negative regulator for NF-κB in vitro. However, little is known about the role of CYLD in bacteria-induced inflammation in vivo. Here, we provided direct evidence for the negative role of CYLD in NTHi-induced inflammation of the mice in vivo. Our data demonstrated that CYLD is induced by NTHi in the middle ear and lung of mice. NTHi-induced CYLD, in turn, negatively regulates NTHi-induced NF-κB activation through deubiquitinating TRAF6 and 7 and down-regulates inflammation. Our data thus indicate that CYLD acts as a negative regulator for NF-κB-dependent inflammation in vivo, hence protecting the host against detrimental inflammatory response to NTHi infection

    C-Band GaN Dual-Feedback Low-Noise Amplifier MMIC with High-Input Power Robustness

    Get PDF
    In this paper, using the 0.2 μm ETRI GaN HEMT process, we developed a C-band GaN dual-feedback low-noise amplifier MMIC for an RF receiver module that requires high-input power robustness. By applying a feedback microstrip line at the source of the transistor and series resistor-capacitor (RC) feedback between the gate and the drain of the transistor, we obtained stable amplifier operation and a compromised impedance trace for both input impedance matching and noise matching while suppressing performance degradation of the maximum available gain and minimum noise figure. The developed low-noise amplifier MMIC, which implements simple matching circuits by using biasing elements as matching elements, had a linear gain of more than 21.4 dB and a noise figure of less than 1.91 dB in the wide bandwidth of 4.3–7.4 GHz. Under the single-tone power test, the low-noise amplifier MMIC had an output P1dB of 14.3–20.1 dBm, and the two-tone intermodulation distortion measurement exhibited an input third-order intercept point (IIP3) of 2.2–5.6 dBm in the same frequency range as the above

    Focal Nodular Hyperplasia with Retraction of Liver Capsule: A Case Report

    Get PDF
    Focal nodular hyperplasia (FNH) is characterized by the presence a central scar with radiating fibrous septa. Our case had a capsular retraction, which was the result of an extension of the central scar to the surface. In addition, a hypointense scar on the T2-weighted image and a minimal enhancing central scar on the enhanced T1-weighted image, which was due to dense, sclerotic collagenous tissue, were observed. We report the first case of FNH with a capsular retraction
    corecore