5 research outputs found

    Can patient-led surveillance detect subsequent new primary or recurrent melanomas and reduce the need for routinely scheduled follow-up? A protocol for the MEL-SELF randomised controlled trial

    Get PDF
    This research project is funded by a National Health and Medical Research Council (NHMRC) Project grant (#1163054). The funder had no role in the design of the study and will have no role in the collection, analysis, and interpretation of the data; the writing of the report; or the decision to submit the report for publication. Funding Information: AEC is funded by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; 1147843). JFT is a recipient of an NHMRC Program Grant (1093017). RPMS is supported by Melanoma Institute Australia. RAS is supported by a NHMRC Program Grant and Practitioner Fellowship. For RAS, support from the from colleagues at Melanoma Institute Australia, Royal Prince Alfred Hospital and NSW Health Pathology is also gratefully acknowledged. RLM is supported with an NHMRC Investigator grant (1194703) and a University of Sydney Robinson Fellowship. HPS holds an NHMRC MRFF Next Generation Clinical Researchers Program Practitioner Fellowship (APP1137127). JH is supported by an NHMRC Early Career Fellowship (1112509). KB is supported by an NHMRC Investigator Grant (1174523) and a University of Sydney Research Accelerator (SOAR) Prize.Peer reviewedPublisher PD

    Perspectives and Experiences of Patient-Led Melanoma Surveillance Using Digital Technologies From Clinicians Involved in the MEL-SELF Pilot Randomized Controlled Trial: Qualitative Interview Study

    Get PDF
    The growing number of melanoma patients who need long-term surveillance increasingly exceeds the capacity of the dermatology workforce, particularly outside of metropolitan areas. Digital technologies that enable patients to perform skin self-examination and send dermoscopic images of lesions of concern to a dermatologist (mobile teledermoscopy) are a potential solution. If these technologies and the remote delivery of melanoma surveillance are to be incorporated into routine clinical practice, they need to be accepted by clinicians providing melanoma care, such as dermatologists and general practitioners (GPs). Objective: This study aimed to explore perceptions of potential benefits and harms of mobile teledermoscopy, as well as experiences with this technology, among clinicians participating in a pilot randomized controlled trial (RCT) of patient-led melanoma surveillance. Methods: This qualitative study was nested within a pilot RCT conducted at dermatologist and skin specialist GPā€“led melanoma clinics in New South Wales, Australia. We conducted semistructured interviews with 8 of the total 11 clinicians who were involved in the trial, including 4 dermatologists (3 provided teledermatology, 2 were treating clinicians), 1 surgical oncologist, and 3 GPs with qualifications in skin cancer screening (the remaining 3 GPs declined an interview). Thematic analysis was used to analyze the data with reference to the concepts of ā€œmedical overuseā€ and ā€œhigh-value care.

    Efficiency of Detecting New Primary Melanoma among Individuals Treated in a High-risk Clinic for Skin Surveillance

    No full text
    Importance: A previous single-center study observed fewer excisions, lower health care costs, thinner melanomas, and better quality of life when surveillance of high-risk patients was conducted in a melanoma dermatology clinic with a structured surveillance protocol involving full-body examinations every 6 months aided by total-body photography (TBP) and sequential digital dermoscopy imaging (SDDI). Objective: To examine longer-term sustainability and expansion of the surveillance program to numerous practices, including a primary care skin cancer clinic setting. Design, Setting, and Participants: This prospective cohort study recruited 593 participants assessed from 2012 to 2018 as having very high risk of melanoma, with a median of 2.9 years of follow-up (interquartile range, 1.9-3.3 years), from 4 melanoma high-risk clinics (3 dermatology clinics and 1 primary care skin cancer clinic) in New South Wales, Australia. Data analyses were conducted from February to September 2020. Exposures: Six-month full-body examination with the aid of TBP and SDDI. For equivocal lesions, the clinician performed SDDI at 3 or 6 months. Main Outcomes and Measures: All suspect monitored or excised lesions were recorded, and pathology reports obtained. Outcomes included the incidence and characteristics of new lesions and the association of diagnostic aids with rates of new melanoma detection. Results: Among 593 participants, 340 (57.3%) were men, and the median age at baseline was 58 years (interquartile range, 47-66 years). There were 1513 lesions excised during follow-up, including 171 primary melanomas. The overall benign to malignant excision ratio, including keratinocyte carcinomas, was 0.8:1.0; the benign melanocytic to melanoma excision ratio was 2.4:1.0; and the melanoma in situ to invasive melanoma ratio was 2.2:1.0. The excision ratios were similar across the 4 centers. The risk of developing a new melanoma was 9.0% annually in the first 2 years and increased with time, particularly for those with multiple primary melanomas. The thicker melanomas (>1-mm Breslow thickness; 7 of 171 melanomas [4.1%]) were mostly desmoplastic or nodular (4 of 7), self-detected (2 of 7), or clinician detected without the aid of TBP (3 of 7). Overall, new melanomas were most likely to be detected by a clinician with the aid of TBP (54 of 171 [31.6%]) followed by digital dermoscopy monitoring (50 of 171 [29.2%]). Conclusions and Relevance: The structured surveillance program for high-risk patients may be implemented at a larger scale given the present cohort study findings suggesting the sustainability and replication of results in numerous settings, including a primary care skin cancer clinic.

    Assessing the Potential for Patient-led Surveillance After Treatment of Localized Melanoma (MEL-SELF) A Pilot Randomized Clinical Trial

    No full text
    Patient-led surveillance is a promising new model of follow-up care following excision of localized melanoma. Objective To determine whether patient-led surveillance in patients with prior localized primary cutaneous melanoma is as safe, feasible, and acceptable as clinician-led surveillance. Design, Setting, and Participants This was a pilot for a randomized clinical trial at 2 specialist-led clinics in metropolitan Sydney, Australia, and a primary care skin cancer clinic managed by general practitioners in metropolitan Newcastle, Australia. The participants were 100 patients who had been treated for localized melanoma, owned a smartphone, had a partner to assist with skin self-examination (SSE), and had been routinely attending scheduled follow-up visits. The study was conducted from November 1, 2018, to January 17, 2020, with analysis performed from September 1, 2020, to November 15, 2020. Intervention Participants were randomized (1:1) to 6 months of patient-led surveillance (the intervention comprised usual care plus reminders to perform SSE, patient-performed dermoscopy, teledermatologist assessment, and fast-tracked unscheduled clinic visits) or clinician-led surveillance (the control was usual care). Main Outcomes and Measures The primary outcome was the proportion of eligible and contacted patients who were randomized. Secondary outcomes included patient-reported outcomes (eg, SSE knowledge, attitudes, and practices, psychological outcomes, other health care use) and clinical outcomes (eg, clinic visits, skin surgeries, subsequent new primary or recurrent melanoma)
    corecore