96 research outputs found
The impact of hyperglycaemic crisis episodes on long-term outcomes for inpatients presenting with acute organ injury: A prospective, multicentre follow-up study
BackgroundThe long-term clinical outcome of poor prognosis in patients with diabetic hyperglycaemic crisis episodes (HCE) remains unknown, which may be related to acute organ injury (AOI) and its continuous damage after hospital discharge. This study aimed to observe the clinical differences and relevant risk factors in HCE with or without AOI.MethodsA total of 339 inpatients were divided into an AOI group (n=69) and a non-AOI group (n=270), and their differences and risk factors were explored. The differences in clinical outcomes and prediction models for evaluating the long-term adverse events after hospital discharge were established.ResultsThe mortality among cases complicated by AOI was significantly higher than that among patients without AOI [8 (11.59%) vs. 11 (4.07%), Q = 0.034] during hospitalization. After a 2-year follow-up, the mortality was also significantly higher in patients with concomitant AOI than in patients without AOI after hospital discharge during follow-up [13 (21.31%) vs. 15 (5.8%), Q < 0.001]. The long-term adverse events in patients with concomitant AOI were significantly higher than those in patients without AOI during follow-up [15 (24.59%) vs. 31 (11.97%), Q = 0.015]. Furthermore, Blood β-hydroxybutyric acid (P = 0.003), Cystatin C (P <0.001), serum potassium levels (P = 0.001) were significantly associated with long-term adverse events after hospital discharge.ConclusionsThe long-term prognosis of HCE patients complicated with AOI was significantly worse than that of HCE patients without AOI. The laboratory indicators were closely correlated with AOI, and future studies should explore the improvement of clinical outcome in response to timely interventions
Advanced lung cancer inflammation index is associated with long-term cardiovascular death in hypertensive patients: national health and nutrition examination study, 1999–2018
Background: Hypertension is one of the main causes of cardiovascular death. Inflammation was considered influential factors of cardiovascular (CVD) death in patients with hypertension. Advanced lung cancer inflammation index (ALI) is an index to assess inflammation, few studies have investigated the relationship between advanced lung cancer inflammation index and cardiovascular death in hypertensive patients.Objective: The aim of this study was to investigate the association between advanced lung cancer inflammation index and long-term cardiovascular death in hypertensive patients.Method: Data from the National Health and Nutrition Examination Survey (NHANES) 1999–2018 with mortality follow-up through 31 December 2019 were analyzed. Advanced lung cancer inflammation index was calculated as BMI (kg/㎡) × serum albumin level (g/dL)/neutrophil to lymphocyte ratio (NLR). A total of 20,517 participants were evaluated. Patients were divided into three groups based on tertiles of advanced lung cancer inflammation index as follows: T1 (n = 6,839), T2 (n = 6,839), and T3 (n = 6,839) groups. The relationship between advanced lung cancer inflammation index and long-term cardiovascular death was assessed by survival curves and Cox regression analysis based on the NHANES recommended weights.Results: The median advanced lung cancer inflammation index value in this study was 61.9 [44.4, 84.6]. After full adjustment, the T2 group (hazard ratio [HR]: 0.59, 95% confidence interval [CI]: 0.50–0.69; p < 0.001) and T3 group (HR: 0.48, 95% CI: 0.39–0.58; p < 0.001) were found to have a significantly lower risk of cardiovascular death compared to the T1 group.Conclusion: High levels of advanced lung cancer inflammation index were associated with reduced risk of cardiovascular death in hypertensive patients
Diagnosis and surgical outcomes of coarctation of the aorta in pediatric patients: a retrospective study
BackgroundCoarctation of the aorta (CoA) is a common congenital cardiovascular malformation, and improvements in the diagnostic process for surgical decision-making are important. We sought to compare the diagnostic accuracy of transthoracic echocardiography (TTE) with computed tomographic angiography (CTA) to diagnose CoA.MethodsWe retrospectively reviewed 197 cases of CoA diagnosed by TTE and CTA and confirmed at surgery from July 2009 to August 2019.ResultsThe surgical findings confirmed that 19 patients (9.6%) had isolated CoA and 178 (90.4%) had CoA combined with other congenital cardiovascular malformations. The diagnostic accuracy of CoA by CTA was significantly higher than that of TTE (χ2 = 6.52, p = 0.01). In contrast, the diagnostic accuracy of TTE for associated cardiovascular malformations of CoA was significantly higher than that of CTA (χ2 = 15.36, p < 0.0001). Infants and young children had more preductal type of CoA, and PDA was the most frequent cardiovascular lesion associated with CoA. The pressure gradient was significantly decreased after the first operation, similar at 6 months, 1 year, and 3 years follow-ups by TTE.ConclusionsCTA is more accurate as a clinical tool for diagnosing CoA; however, TTE with color Doppler can better identify associated congenital cardiovascular malformations. Therefore, combining TTE and CTA would benefit clinical evaluation and management in patients suspected of CoA. TTE was valuable for post-operation follow-up and clinical management
Identification of Amino Acids in HA and PB2 Critical for the Transmission of H5N1 Avian Influenza Viruses in a Mammalian Host
Since 2003, H5N1 influenza viruses have caused over 400 known cases of human infection with a mortality rate greater than 60%. Most of these cases resulted from direct contact with virus-contaminated poultry or poultry products. Although only limited human-to-human transmission has been reported to date, it is feared that efficient human-to-human transmission of H5N1 viruses has the potential to cause a pandemic of disastrous proportions. The genetic basis for H5N1 viral transmission among humans is largely unknown. In this study, we used guinea pigs as a mammalian model to study the transmission of six different H5N1 avian influenza viruses. We found that two viruses, A/duck/Guangxi/35/2001 (DKGX/35) and A/bar-headed goose/Qinghai/3/2005(BHGQH/05), were transmitted from inoculated animals to naïve contact animals. Our mutagenesis analysis revealed that the amino acid asparagine (Asn) at position 701 in the PB2 protein was a prerequisite for DKGX/35 transmission in guinea pigs. In addition, an amino acid change in the hemagglutinin (HA) protein (Thr160Ala), resulting in the loss of glycosylation at 158–160, was responsible for HA binding to sialylated glycans and was critical for H5N1 virus transmission in guinea pigs. These amino acids changes in PB2 and HA could serve as important molecular markers for assessing the pandemic potential of H5N1 field isolates
Oral Supplementation with Three Vegetable Oils Differing in Fatty Acid Composition Alleviates High-Fat Diet-Induced Obesity in Mice by Regulating Inflammation and Lipid Metabolism
Obesity has become one of the most prevalent chronic diseases worldwide, which affects people's health and daily lives. Therefore, this study aimed to investigate the anti-obesity effects of perilla seed oil (PSO), sunflower oil (SFO), and tea seed oil (TSO) and their potential mechanisms in mice fed a high-fat diet (HFD). Mice were divided into five groups: ND, mice fed a normal diet; HFD, mice fed a high-fat diet; PSO, SFO, and TSO, mice fed a high-fat diet supplemented with PSO, SFO, and TSO at 2 g/kg body weight per day, respectively. Our findings showed that oral supplementation with all three oils for 8 weeks significantly reduced body weight, tissue weight, insulin resistance index, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and free fatty acids (FFA), and markedly alleviated hyperglycemia, hyperlipidemia, and hepatic steatosis in obese mice. It also decreased leptin, pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and (IL)-1beta (IL-1β), and increased anti-inflammatory adipokine adiponectin at both secretion and mRNA expression levels in the epididymal adipose tissue (EAT). Moreover, PSO, SFO, and TSO administration increased the expression levels of fatty acid β-oxidation-related genes, including peroxisome proliferator-activated receptor-alpha (PPAR-α), carnitine palmitoyltransferase 1a (CPT1a) and CPT1b, and thermogenesis-related genes such as uncoupling protein 1 (UCP1), and decreased the expression levels of lipid synthesis-related genes, including fatty acid synthase (FAS) and PPAR-γ in EAT. In conclusion, PSO, SFO, and TSO supplementation could have potential anti-obesity effects in HFD-fed mice by reducing inflammation and improving lipid metabolism
Enzymatic deposition of gold nanoparticles at vertically aligned carbon nanotubes for electrochemical stripping analysis and ultrasensitive immunosensing of carcinoembryonic antigen
Herein we combine the sandwich immunoreaction at a vertically aligned single-walled carbon nanotube (SWCNT)-based immunosensor and the enzymatically catalytic deposition of gold nanoparticles (Au NPs) by a gold nanoprobe to develop a novel electrochemical immunosensing method. The vertically arranged nanostructure was prepared through the covalent linking of terminally carboxylated SWCNTs at an aryldiazonium-modified electrode. It not only provides an excellent platform for the high density immobilization of antibodies to obtain the immunosensor but also serves as useful molecular wires to accelerate electron transfer during the electrochemical immunosensing process. Meanwhile, the enzymatic reaction of the nanoprobe prepared by surface functionalization of the nanocarrier of Au NPs by high-content glucoamylases can catalyze the deposition of a large number of Au NPs at the immunosensor. The electrochemical stripping analysis of these nanoparticles enabled the convenient signal transduction of the method. Due to the sensitive gold stripping analysis at the vertically aligned SWCNTs and the multi-enzyme signal amplification of the nanoprobe, the electrochemical signal response was greatly enhanced. Thus, the method can be used for the ultrasensitive detection of the tumor biomarker of carcinoembryonic antigen in a wide linear range of 5 orders of magnitude with a low detection limit of 0.48 pg mL(-1). Considering its obvious performance superiorities, this immunosensing method exhibits an extensive prospect for practical applications
- …