68 research outputs found

    The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia

    Get PDF
    Cytarabine (ara-C) is the most effective agent for the treatment of acute myeloid leukaemia (AML). Aberrant expression of enzymes involved in the transport/metabolism of ara-C could explain drug resistance. We determined mRNA expression of these factors using quantitative-real-time-PCR in leukemic blasts from children diagnosed with de novo AML. Expression of the inactivating enzyme pyrimidine nucleotidase-I (PN-I) was 1.8-fold lower in FAB-M5 as compared to FAB-M1/2 (P=0.007). In vitro sensitivity to deoxynucleoside analogues was determined using the MTT-assay. Human equilibrative nucleoside transporter-1 (hENT1) mRNA expression and ara-C sensitivity were significantly correlated (rp=−0.46; P=0.001), with three-fold lower hENT1 mRNA levels in resistant patients (P=0.003). hENT1 mRNA expression also seemed to correlate inversely with the LC50 values of cladribine (rp=−0.30; P=0.04), decitabine (rp=−0.29; P=0.04) and gemcitabine (rp=−0.33; P=0.02). Deoxycytidine kinase (dCK) and cytidine deaminase (CDA) mRNA expression seemed to correlate with in vitro sensitivity to gemcitabine (rp=−0.31; P=0.03) and decitabine (rp=0.33; P=0.03), respectively. The dCK/PN-I ratio correlated inversely with LC50 values for gemcitabine (rp=−0.45, P=0.001) and the dCK/CDA ratio seemed to correlate with LC50 values for decitabine (rp=−0.29; 0.04). In conclusion, decreased expression of hENT1, which transports ara-C across the cell membrane, appears to be a major factor in ara-C resistance in childhood AML

    Therapeutic potential of cladribine in combination with STAT3 inhibitor against multiple myeloma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cladribine or 2-chlorodeoxyadenosine (2-CDA) is a well-known purine nucleoside analog with particular activity against lymphoproliferative disorders, such as hairy cell leukemia (HCL). Its benefits in multiple myeloma (MM) remain unclear. Here we report the inhibitory effects of cladribine on MM cell lines (U266, RPMI8226, MM1.S), and its therapeutic potential in combination with a specific inhibitor of the signal transducer and activator of transcription 3 (STAT3).</p> <p>Methods</p> <p>MTS-based proliferation assays were used to determine cell viability in response to cladribine. Cell cycle progression was examined by flow cytometry analysis. Cells undergoing apoptosis were evaluated with Annexin V staining and a specific ELISA to quantitatively measure cytoplasmic histone-associated DNA fragments. Western blot analyses were performed to determine the protein expression levels and activation.</p> <p>Results</p> <p>Cladribine inhibited cell proliferation of MM cells in a dose-dependent manner, although the three MM cell lines exhibited a remarkably different responsiveness to cladribine. The IC50 of cladribine for U266, RPMI8226, or MM1.S cells was approximately 2.43, 0.75, or 0.18 μmol/L, respectively. Treatment with cladribine resulted in a significant G1 arrest in U266 and RPMI8226 cells, but only a minor increase in the G1 phase for MM1.S cells. Apoptosis assays with Annexin V-FITC/PI double staining indicated that cladribine induced apoptosis of U266 cells in a dose-dependent manner. Similar results were obtained with an apoptotic-ELISA showing that cladribine dramatically promoted MM1.S and RPMA8226 cells undergoing apoptosis. On the molecular level, cladribine induced PARP cleavage and activation of caspase-8 and caspase-3. Meanwhile, treatment with cladribine led to a remarkable reduction of the phosphorylated STAT3 (P-STAT3), but had little effect on STAT3 protein levels. The combinations of cladribine and a specific STAT3 inhibitor as compared to either agent alone significantly induced apoptosis in all three MM cell lines.</p> <p>Conclusions</p> <p>Cladribine exhibited inhibitory effects on MM cells <it>in vitro</it>. MM1.S is the only cell line showing significant response to the clinically achievable concentrations of cladribine-induced apoptosis and inactivation of STAT3. Our data suggest that MM patients with the features of MM1.S cells may particularly benefit from cladribine monotherapy, whereas cladribine in combination with STAT3 inhibitor exerts a broader therapeutic potential against MM.</p

    Cladribine with cyclophosphamide and prednisone in the management of low-grade lymphoproliferative malignancies

    Get PDF
    The feasibility of combining cladribine with cyclophosphamide and prednisone in the management of indolent lymphoid malignancies was determined. Nineteen patients [nine chronic lymphocytic leukaemia (CLL), seven non-Hodgkin's lymphoma (NHL) and three macroglobulinaemia (M))] received cladribine 0.1 mg kg−1 per day as a subcutaneous bolus injection on days 1–3 (up to 5 injections) with intravenous cyclophosphamide 500 mg m−2 on day 1 and oral prednisone 40 mg m−2 on days 1–5 at 4-weekly intervals up to a maximum of six courses. A total of 80 courses were given. Overall response rate was 88%, with four patients achieving a complete clinical and haematological response and 12 achieving a partial response. Neutropenia WHO grade 4 in two patients and WHO grade 3 infection in one patient were the limiting toxicities on treatment. During the follow-up, WHO grade ≥3 haematological complications occurred in five patients and WHO grade ≥3 non-haematological complications in five patients. There were no treatment-related deaths. This study demonstrates the feasibility of the cladribine/cyclophosphamide/prednisone (CCP) combination that appears highly active and safe in the management of indolent lymphoid malignancies. © 1999 Cancer Research Campaig

    Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp

    Full text link

    Should regulators be concerned with pharmacoeconomic issues?

    No full text
    • …
    corecore