3 research outputs found

    Biological and Physico-Chemical Properties of Composite Layers Based on Magnesium-Doped Hydroxyapatite in Chitosan Matrix

    No full text
    In the present study, we report the development and characterization of composite layers (by spin coating) based on magnesium-doped hydroxyapatite in a chitosan matrix, (Ca10−xMgx(PO4)6(OH)2; xMg = 0, 0.08 and 0.3; HApCh, 8MgHApCh and 30MgHApCh). The MgHApCh composite layers were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. The in vitro biological evaluation included the assessment of their cytotoxicity on MG63 osteoblast-like cells and antifungal activity against Candida albicans ATCC 10231 fungal cell lines. The results of the physico-chemical characterization highlighted the obtaining of uniform and homogeneous composite layers. In addition, the biological assays demonstrated that the increase in the magnesium concentration in the samples enhanced the antifungal effect but also decreased their cytocompatibility. However, for certain optimal magnesium ion concentrations, the composite layers presented both excellent biocompatibility and antifungal properties, suggesting their promising potential for biomedical applications in both implantology and dentistry

    Preparation and Characterization of Dextran Coated Iron Oxide Nanoparticles Thin Layers

    No full text
    In the present study, we report the synthesis of a dextran coated iron oxide nanoparticles (DIO-NPs) thin layer on glass substrate by an adapted method. The surface morphology of the obtained samples was analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), optical, and metallographic microscopies. In addition, the distribution of the chemical elements into the DIO-NPs thin layer was analyzed by Glow Discharge Optical Emission Spectrometry (GDOES). Furthermore, the chemical bonds formed between the dextran and iron oxide nanoparticles was investigated by Fourier Transform Infrared Spectroscopy (FTIR). Additionally, the HepG2 viability incubated with the DIO-NPs layers was evaluated at different time intervals using MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The goal of this study was to obtain a DIO-NPs thin layer which could be used as a coating for medical devices such as microfluidic channel, microchips, and catheter. The results of the surface morphology investigations conducted on DIO-NPs thin layer suggests the presence of a continuous and homogeneous layer. In addition, the GDOES results indicate the presence of C, H, Fe, and O signal intensities characteristic to the DIO-NPs layers. The presence in the IR spectra of the Fe-CO metal carbonyl vibration bonds prove that the linkage between iron oxide nanoparticles and dextran take place through carbon–oxygen bonds. The cytotoxicity assays highlighted that HepG2 cells morphology did not show any noticeable modifications after being incubated with DIO-NPs layers. In addition, the MTT assay suggested that the DIO-NPs layers did not present any toxic effects towards HEpG2 cells

    Preparations of Silver/Montmorillonite Biocomposite Multilayers and Their Antifungal Activity

    No full text
    In this study, the results about the influence of the surface morphology of layers based on montmorillonite (MMT) and silver (Ag) on antimicrobial properties are reported. The coating depositions were performed in the plasma of a radio frequency (RF) magnetron sputtering discharge. The studied layers were single montmorillonite layers (MMT) and silver/montmorillonite multilayers (MMT-Ag) obtained by magnetron sputtering technique with a different surface thickness. The resultant MMT-Ag biocomposite multilayers exhibited a uniform distribution of constituent elements and enhanced antimicrobial properties against fungal biofilm development. Glow-discharge optical emission spectroscopy (GDOES) analysis revealed the formation of MMT-Ag biocomposite multilayers following the deposit of a silver layer for an MMT layer that was initially deposited on a Si substrate. The surface morphology and thickness evaluation of deposited biocomposite layers were performed by scanning electron microscopy (SEM). A qualitative analysis of the chemical composition of thin layers was performed and the elements O, Ag, Mg, Fe, Al, and Si were identified in the MMT-Ag biocomposite multilayers. The in vitro antifungal assay proved that the inhibitory effect against the growth of Candida albicans ATCC 101231 CFU was more emphasized in the case of MMT-Ag biocomposite multilayers that in the case of the MMT layer. Cytotoxicity studies performed on HeLa cells showed that the tested layers did not show significant toxicity at the time intervals during which the assay was performed. On the other hand, it was observed that the MMT layers exhibited slightly higher biocompatible properties than the MMT-Ag composite layers
    corecore