40 research outputs found

    Using Drones to Determine Chimpanzee Absences at the Edge of Their Distribution in Western Tanzania

    Get PDF
    Effective species conservation management relies on detailed species distribution data. For many species, such as chimpanzees (Pan troglodytes), distribution data are collected during ground surveys. For chimpanzees, such ground surveys usually focus on detection of the nests they build instead of detection of the chimpanzees themselves due to their low density. However, due to the large areas they still occur in, such surveys are very costly to conduct and repeat frequently to monitor populations over time. Species distribution models are more accurate if they include presence as well as absence data. Earlier studies used drones to determine chimpanzee presence using nests. In this study, therefore, we explored the use of drones to determine the absence of chimpanzee nests in areas we flew over on the edge of the chimpanzee distribution in western Tanzania. We conducted 13 flights with a fixed-wing drone and collected 3560 images for which manual inspection took 180 h. Flights were divided into a total of 746 25 m2 plots for which we determined the absence probability of nests. In three flights, we detected nests, in eight, absence was assumed based on a 95% probability criterion, and in two flights, nest absence could not be assumed. Our study indicates that drones can be used to cover relatively large areas to determine the absence of chimpanzees. To fully benefit from the usage of drones to determine the presence and absence of chimpanzees, it is crucial that methods are developed to automate nest detection in images

    Spatio-temporal changes in chimpanzee density and abundance in the Greater Mahale Ecosystem, Tanzania

    Get PDF
    Authors would like to acknowledge the Arcus Foundation, Jane Goodall Institute, United States Agency for International Development (USAID), National Aeronautics and Space Administration (NASA), The Nature Conservancy, and Frankfurt Zoological Society for supporting, facilitating, and funding this work.Species conservation and management require reliable information about animal distribution and population size. Better management actions within a species' range can be achieved by identifying the location and timing of population changes. In the Greater Mahale Ecosystem (GME), western Tanzania, deforestation due to the expansion of human settlements and agriculture, annual burning, and logging are known threats to wildlife. For one of the most charismatic species, the Endangered eastern chimpanzee (Pan troglodytes schweinfurthii), about 75% of the individuals are distributed outside national park boundaries, requiring monitoring and protection efforts over a vast landscape of various protection statuses. These efforts are especially challenging when we lack data on trends in density and population size. To predict spatio-temporal chimpanzee density and abundance across the GME, we employed density surface modelling, fitting a generalised additive model to a ten-year time series data set of nest counts based on line transect surveys. Chimpanzee population declined at an annual rate of 2.41%, including declines of 1.72% in riparian forests (hereafter forests), 2.05% in miombo-woodlands (hereafter woodlands) and 3.45% in non-forests. These population declines were accompanied by ecosystem-wide declines in vegetation types of 1.36% and 0.32% per year for forests and woodlands, respectively; we estimated an annual increase of 1.35% for non-forests. Our model predicted the highest chimpanzee density in forests (0.86 chimpanzees/km2, 95% CI 0.60-1.23; as of 2020), followed by woodlands (0.19, 95% CI 0.12-0.30) and non-forests (0.18, 95% CI 0.10-1.33). Although forests represent only 6% of the landscape, they support nearly a quarter of the chimpanzee population (769 chimpanzees, 95% CI 536-1,103). Woodlands dominate the landscape (71%) and thus support more than a half of the chimpanzee population (2,294; 95% CI 1,420-3,707). The remaining quarter of the landscape is represented by non-forests and supports another quarter of the chimpanzee population (750; 95% CI 408-1,381). Given the pressures on the remaining suitable habitat in Tanzania and the need of chimpanzees to access both forest and woodland vegetation to survive, we urge future management actions to increase resources and expand the efforts to protect critical forest and woodland habitat and promote strategies and policies that more effectively prevent irreversible losses. We suggest that regular monitoring programmes implement a systematic random design to effectively inform and allocate conservation actions and facilitate inter-annual comparisons for trend-monitoring, measuring conservation success and guiding adaptive management.Publisher PDFPeer reviewe

    Grauer’s Gorillas and Chimpanzees in Eastern Democratic Republic of Congo (Kahuzi-Biega, Maiko, Tayna and Itombwe Landscape): Conservation Action Plan 2012–2022

    Get PDF
    First paragraph: En janvier 2011, l'Institut Jane Goodall (JGI d'après le sigle en anglais), avec le support financier des fondations Arcus et The Word We Want, a réuni ses partenaires pour la conservation de la nature afin de développer un plan d'action pour la conservation des grands singes de l'Est de la République Démocratique du Congo. Le but principal de cette initiative était d'identifier les menaces critiques sur les gorilles et les chimpanzés et leurs habitats et de développer des stratégies de conservation en réponse à ces menaces. L'accent a été mis sur des actions systémiques et stratégiques ayant une valeur ajoutée pour l'effort de planification à grande échelle d'efforts ciblés. Au cours de ce processus, le JGI, en collaboration avec le Ministère de l'Environnement, de la Conservation de la Nature et du Tourisme (MECNT) et l'Institut Congolais pour la Conservation de la Nature (ICCN), a travaillé étroitement avec de nombreuses parties prenantes provinciales et locales et des ONG internationales de conservation. La liste des participants aux ateliers se trouve en Annexe I

    Gorilles de Grauer et Chimpanzés de l’Est de la République Démocratique du Congo (Paysage de Kahuzi-Biega, Maiko, Tayna et Itombwe) Plan d’action pour la conservation 2012-2022

    Get PDF
    First paragraph: En janvier 2011, l'Institut Jane Goodall (JGI d'après le sigle en anglais), avec le support financier des fondations Arcus et The Word We Want, a réuni ses partenaires pour la conservation de la nature afin de développer un plan d'action pour la conservation des grands singes de l'Est de la République Démocratique du Congo. Le but principal de cette initiative était d'identifier les menaces critiques sur les gorilles et les chimpanzés et leurs habitats et de développer des stratégies de conservation en réponse à ces menaces. L'accent a été mis sur des actions systémiques et stratégiques ayant une valeur ajoutée pour l'effort de planification à grande échelle d'efforts ciblés. Au cours de ce processus, le JGI, en collaboration avec le Ministère de l'Environnement, de la Conservation de la Nature et du Tourisme (MECNT) et l'Institut Congolais pour la Conservation de la Nature (ICCN), a travaillé étroitement avec de nombreuses parties prenantes provinciales et locales et des ONG internationales de conservation. La liste des participants aux ateliers se trouve en Annexe I

    Barriers to chimpanzee gene flow at the south-east edge of their distribution

    Get PDF
    Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south-eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq-based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species

    Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

    Get PDF
    Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen

    Barriers to chimpanzee gene flow at the south‐east edge of their distribution

    Get PDF
    Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south‐eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq‐based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species

    Predicting range shifts of African apes under global change scenarios

    Get PDF
    Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results: The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa\u27s current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad

    Quantitative estimates of glacial refugia for chimpanzees (Pan troglodytes) since the Last Interglacial (120,000 BP).

    Get PDF
    Paleoclimate reconstructions have enhanced our understanding of how past climates have shaped present-day biodiversity. We hypothesize that the geographic extent of Pleistocene forest refugia and suitable habitat fluctuated significantly in time during the late Quaternary for chimpanzees (Pan troglodytes). Using bioclimatic variables representing monthly temperature and precipitation estimates, past human population density data, and an extensive database of georeferenced presence points, we built a model of changing habitat suitability for chimpanzees at fine spatio-temporal scales dating back to the Last Interglacial (120,000 BP). Our models cover a spatial resolution of 0.0467° (approximately 5.19 km2 grid cells) and a temporal resolution of between 1000 and 4000 years. Using our model, we mapped habitat stability over time using three approaches, comparing our modeled stability estimates to existing knowledge of Afrotropical refugia, as well as contemporary patterns of major keystone tropical food resources used by chimpanzees, figs (Moraceae), and palms (Arecacae). Results show habitat stability congruent with known glacial refugia across Africa, suggesting their extents may have been underestimated for chimpanzees, with potentially up to approximately 60,000 km2 of previously unrecognized glacial refugia. The refugia we highlight coincide with higher species richness for figs and palms. Our results provide spatio-temporally explicit insights into the role of refugia across the chimpanzee range, forming the empirical foundation for developing and testing hypotheses about behavioral, ecological, and genetic diversity with additional data. This methodology can be applied to other species and geographic areas when sufficient data are available
    corecore