96 research outputs found

    Influence of Environmental Conditions on Carbon Black Oxidation by Reactive Oxygen Intermediates

    Get PDF
    AbstractThe paper examined the influence of hydrogen peroxide and ozone and singlet oxygen co-agents on the functional groups of the carbon black surface. The influence of the ambient temperature and the concentration of the reactants on protogenic functional groups (carboxylic and phenolic) generating has been studied. To assess the functional composition methods of titration with alkali of different strengh, differential potentiometer, pyrolysis gas chromatography have been used. It was found that the carbon oxidation depends on the sample structure. It is shown that carbon oxidation with hydrogen peroxide depends on the co-agent nature. With singlet oxygen used as a co-agent, carboxyl groups with the lowest pKa of about 2are generated on the carbon surface. When using ozone pKa of the group is higher than 2

    Perspective Directions of Synthesis of Materials with Biospecific Actions Based on Nanodispersed Carbon

    Get PDF
    AbstractThe results of long-term researches and development of modified materials for medical and veterinary application based on nanodispersed carbon are given. Complex of methods of chemical functionalization of carbon sorbents surface with biospecific properties is described. The main results of modified carbon sorbent researches by physiochemical and biomedical methods are represented

    Optimizing the Conditions of Mechanochemical Synthesis of LiAl Layered Hydroxides

    Get PDF
    AbstractLiAl layered double hydroxides (LDH) are the promising compounds for application in base catalysis and as precursors of the supports for platinum catalysts. In the work, such systems were synthesized by mechanochemical method. The effect of composition of the initial mixture (Al(OH)3, Al(NO3)3, LiOH, LiNO3), material of milling bodies (steel or ceramic), and activation conditions (centripetal acceleration and activation time) on the properties of LiAl-LDH were studied. It was found that each of the synthesized systems is a polyphase one and contains not only the LDH phase but also the side phase of aluminum trihydroxide. In addition, the samples obtained with the use of steel milling bodies have a substantial amount of iron. The use of ceramic milling bodies makes it possible to obtain the LiAl-LDH phase under relatively mild conditions (acceleration of 300 m/s2 and activation time of 15min)

    The Effect of Mechanical Activation on the Physico-Chemical Properties of Carbon Black and Rubber Mixtures Filled with It

    Get PDF
    ИсслСдовано влияниС мСханичСской Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π½Π° ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒ, ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ абсорбции Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»Ρ„Ρ‚Π°Π»Π°Ρ‚Π° (Π”Π‘Π€), Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π°Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ‚ΠΎΠ² ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠΎΠΊΡ€ΠΎΠ² повСрхности тСхничСского ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° (Π’Π£) ΠΌΠ°Ρ€ΠΊΠΈ N375. УстановлСно, Ρ‡Ρ‚ΠΎ Π² процСссС мСханичСской Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ возрастаСт количСство кислородсодСрТащих Π³Ρ€ΡƒΠΏΠΏ Π½Π° повСрхности Π’Π£ ΠΎΡ‚ 0,12 Π΄ΠΎ 0,34 мэкв/Π³ ΠΈ сниТаСтся Ρ€Π°Π·ΠΌΠ΅Ρ€ Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² ΠΎΡ‚ 300 Π΄ΠΎ 3-5 ΠΌΠΊΠΌ. ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ сниТаСтся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° абсорбции Π”Π‘Π€. Π Π΅Π·ΠΈΠ½Π°, получаСмая Π½Π° основС смСси ΠΊΠ°ΡƒΡ‡ΡƒΠΊΠ° ΠΌΠ°Ρ€ΠΊΠΈ БКМБ-30 АРК ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΎΠ°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π’Π£, отличаСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌΠΈ значСниями ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ удлинСния ΠΏΡ€ΠΈ растяТСнии ΠΈ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΠΌ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΌ упругостиThe influence of mechanical activation on porosity, structure (by absorption of dibutyl phthalate (DBP), the size of the agglomerates and the functional surface of the carbon black (CB) N375 was investigated. It was established that in the process of mechanical activation, the number of oxygencontaining groups on the surface CB increases to 0.34 meq/g and the size of the aggregates decreases from 300 to 3-5 microns. At the same time, the amount of absorption of DBP decreases. The rubber obtained on the basis of a mixture of SKMS-30 ARK rubber and mechanically activated CB is characterized by increased values of relative elongation under tension and a lower modulus of elasticit

    Π­Π€Π€Π•ΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π― Π£Π“Π›Π•Π ΠžΠ”ΠΠžΠ“Πž Π€ΠžΠ ΠœΠžΠ’ΠΠΠΠžΠ“Πž Π‘ΠžΠ Π‘Π•ΠΠ’Π Π’ΠΠ˜Π˜Π’Π£-1 Π’ ΠΠšΠ£Π¨Π•Π Π‘ΠšΠžΠ™ ΠŸΠ ΠΠšΠ’Π˜ΠšΠ•

    Get PDF
    Objective: to develop a technology for obtaining the molded sorbent VNIITU1, to study its physicochemical and biomedical properties, and to evaluate its efficacy in preventing and treating pyoinflammatory complications in obstetrics.Materials and methods.Β The molded sorbent VNIITU-1 was designed from the carbon porous material based on nanodispersed carbon by mixing with a vehicle, extruding the mixture, drying the extrudate in an inert atmosphere, thermally treating and activating by steam, followed byΒ washing with distilled water and drying (TU 9398043710698342013). The molded sorbent VNIITU-1 is apyrogenic and nontoxicΒ (Toxicity Study Conclusion No. 1998.013.P dated 14.08.2013; Engineering Testing Assessment No. 12.404 ORTI/2013 datedΒ 26.08.2013), it is destined for single administration, sterile, placed in a removable thread capron mesh container, and used to treatΒ and prevent pyoseptic complications in puerperas at risk for infection, such as acute nonspecific postpartum endometritis. A total ofΒ 52 puerperas were examined and treated. They had been divided into 2 groups: a study group (n=37) and a comparison groupΒ (n=15). In the study group, the hemosorbent VNIITU1 as a porous carbon applicator was postpartum inserted into the uterine cavity, by concurrently performing traditional antibiotic therapy to prevent infectious complications. The comparison group receivedΒ only traditional antibiotic therapy. The uterine cavity aspirate was examined for IL1Ξ² and IL6 levels, its microbial profile, andΒ microbial growth patterns in culture media. The data were processed using a package of applied STATISTICA6.1 programs andΒ standard mathematical tables in Microsoft Excel. Descriptive and variation statistical methods were applied. The data were presented as Me [low quartilehigh quartile (LQHQ)]; two pre and posttreatment dependent variables were compared using theΒ Wilcoxon and Mann-Whitney tests.Results. The molded carbon sorbent VNIITU1 was found to have pronounced antibacterialΒ activity against S.aureus, P.aeroginosa, K.pneumonia, E.coli and S.agalactiae. Examination of lavages from the surface of the sorbent after its removal from the uterine cavity, by using a transmission electron microscope, revealed castoff epithelial cells, leukocytes, macrophages, and microorganisms, which determines the capacity of the sorbent to eliminate not only soluble toxins, but alsoΒ microorganisms and disintegrating cell elements. Conclusion. The proposed procedure to Β postpartum endometritis in puerΒ peras at risk for infection via insertion of the porous carbon applicator VNIITU1 into the uterine cavity is more effective than theΒ traditional approach and it can improve treatment results, by completely eliminating pathogens from the uterus and by reducing theΒ level of local proinflammatory cytokines.ЦСль β€” Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ получСния Ρ„ΠΎΡ€ΠΌΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ сорбСнта Π’ΠΠ˜Π˜Π’Π£-1, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π³ΠΎ физикохимичСскиС ΠΈ ΠΌΠ΅Π΄ΠΈΠΊΠΎ-биологичСскиС свойства ΠΈ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ эффСктивности использования для ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ лСчСния Π³Π½ΠΎΠΉΠ½ΠΎ-Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…Β ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ Π² Π°ΠΊΡƒΡˆΠ΅Ρ€ΡΡ‚Π²Π΅.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘ΠΎΠ·Π΄Π°Π½ Ρ„ΠΎΡ€ΠΌΠΎΠ²Π°Π½Π½Ρ‹ΠΉ сорбСнт Π’ΠΠ˜Π˜Π’Π£-1 ΠΈΠ· ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ пористого ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° основС нанодиспСрсного ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° ΠΏΡƒΡ‚Π΅ΠΌ смСшСния со ΡΠ²ΡΠ·ΡƒΡŽΡ‰ΠΈΠΌ вСщСством, экструзиСй смСси,Β ΡΡƒΡˆΠΊΠΎΠΉ экструдата Π² ΠΈΠ½Π΅Ρ€Ρ‚Π½ΠΎΠΉ срСдС, Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠ΅ΠΉ водяным ΠΏΠ°Ρ€ΠΎΠΌ, с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ ΠΎΡ‚ΠΌΡ‹Π²ΠΊΠΎΠΉ Π² дистиллированной Π²ΠΎΠ΄Π΅ ΠΈ ΡΡƒΡˆΠΊΠΎΠΉ (Π’Π£ 9398043710698342013). Π€ΠΎΡ€ΠΌΠΎΠ²Π°Π½Π½Ρ‹ΠΉ сорбСнт Π’ΠΠ˜Π˜Π’Π£-1 Π°ΠΏΠΈΡ€ΠΎΠ³Π΅Π½Π΅Π½, Π½Π΅ токсичСн (Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ токсикологичСских испытаний β„– 1998.013.Π  ΠΎΡ‚ 14.08.2013 Π³., Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΎΠ± ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² тСхничСских испытаний β„– 12.404 ОРВИ/2013 ΠΎΡ‚ 26.08.2013 Π³.), ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ для ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎΠ³ΠΎ примСнСния, стСрилСн, ΠΏΠΎΠΌΠ΅Ρ‰Π΅Π½ Π²Β ΠΊΠ°ΠΏΡ€ΠΎΠ½ΠΎΠ²Ρ‹ΠΉ сСтчатом ΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€Π΅ с Π½ΠΈΡ‚ΡŒΡŽ для ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ удалСния ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для лСчСния ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ Π³Π½ΠΎΠΉΠ½ΠΎ-сСптичСских ослоТнСний Ρƒ Ρ€ΠΎΠ΄ΠΈΠ»ΡŒΠ½ΠΈΡ† ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ риска β€” острого нСспСцифичСского послСродового эндомСтрита. ОбслСдовано ΠΈ ΠΏΡ€ΠΎΠ»Π΅Ρ‡Π΅Π½ΠΎ 52 Ρ€ΠΎΠ΄ΠΈΠ»ΡŒΠ½ΠΈΡ†Ρ‹ высокого ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ риска, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° 2 Π³Ρ€ΡƒΠΏΠΏΡ‹: основная (n=37) ΠΈ Π³Ρ€ΡƒΠΏΠΏΠ° сравнСния (n=15). Π ΠΎΠ΄ΠΈΠ»ΡŒΠ½ΠΈΡ†Π°ΠΌ основной Π³Ρ€ΡƒΠΏΠΏΡ‹ Π² ΠΏΠΎΠ»ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚ΠΊΠΈ Π² послСродовом ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ для ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ослоТнСний вводился гСмосорбСнт Π’ΠΠ˜Π˜Π’Π£-1 Π² Π²ΠΈΠ΄Π΅ пористого ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° одноврСмСнно с ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π ΠΎΠ΄ΠΈΠ»ΡŒΠ½ΠΈΡ†Ρ‹ Π³Ρ€ΡƒΠΏΠΏΡ‹ сравнСния ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΡƒ. Π’ аспиратС ΠΈΠ· полости ΠΌΠ°Ρ‚ΠΊΠΈ опрСдСляли содСрТаниС IL1Ξ² ΠΈ IL6, Π΅Π³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ роста ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π½Π° ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… срСдах. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»Π°ΡΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ…Β ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ Β«STATISTIKA-6.1Β» ΠΈ стандартных матСматичСских Ρ‚Π°Π±Π»ΠΈΡ† Β«Microsoft ExcelΒ». Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉΒ ΠΈ Π²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ статистики. Π”Π°Π½Π½Ρ‹Π΅ прСдставлСны ΠΊΠ°ΠΊ Me (LQ; HQ), сравнСниС Π΄Π²ΡƒΡ… зависимых ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… (Π΄ΠΎ ΠΈ послС лСчСния) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² Вилкоксона ΠΈ Манна-Π£ΠΈΡ‚Π½ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΉ сорбСнт Π’ΠΠ˜Π˜Π’Π£-1 ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ свойствами ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ S.aureus, P.aeroginosa,Β K.pneumonia, E.coli, S.agalactiae. ИсслСдованиС смывов с повСрхности сорбСнта послС Π΅Π³ΠΎ извлСчСния ΠΈΠ· полости ΠΌΠ°Ρ‚ΠΊΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΡΠ²Π΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ элСктронного микроскопа выявило ΠΊΠ»Π΅Ρ‚ΠΊΠΈ слущСнного эпитСлия, Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚Ρ‹, ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡ‹, Ρ‡Ρ‚ΠΎ обусловливаСт ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ сорбСнта ΡΠ»ΠΈΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ растворимыС токсины, Π½ΠΎ ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡ‹,Β Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ элСмСнты.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ способ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ послСродового эндомСтрита Ρƒ Ρ€ΠΎΠ΄ΠΈΠ»ΡŒΠ½ΠΈΡ† с ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ риском с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ввСдСния пористого ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° Π’ΠΠ˜Π˜Π’Π£-1 являСтся Π±ΠΎΠ»Π΅Π΅ эффСктивным ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ ΠΈ позволяСт ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ лСчСния Π·Π° счСт ΠΏΠΎΠ»Π½ΠΎΠΉ элиминации ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π²ΠΎΠ·Π±ΡƒΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈΠ· ΠΏΠΎΠ»ΠΎcΡ‚ΠΈ ΠΌΠ°Ρ‚ΠΊΠΈ ΠΈ сниТСния уровня мСстных ΠΏΡ€ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²

    Борбция Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ² in vitro Π½ΠΎΠ²Ρ‹ΠΌ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ гСмосорбСнтом (cΡ‚Π΅Π½Π΄ΠΎΠ²ΠΎΠ΅ испытаниС)

    Get PDF
    Objective: to study the specific features of sorption of some protein molecules (cytokines, immunoglobulins) in vitro, by using the carbon hemosorbent designed at the Institute of Hydrocarbon Process Problems, Siberian Branch, Russian Academy of Sciences.Materials and methods. 42 plasma samples from 14 patients with peritonitis were examined before and after hemosorption. Plasma was perfused through the hemosorbent with a plasma:hemosorbent ratio of 10:1 and a 5-cm3-column volume on an Π£ΠΠ˜Π ΠžΠ›-1 at a rate of 15 ml/min.Results. The designed hemosorbent was found to absorb proinflammatory cytokines, such as tumor necrosis fac-tor-a and interleukin-1/J more than the hemosorbent VNIITU-1, and to significantly unchange the content of immunoglobulins M, G, and A. The absorptive capacity of the new hemosorbent was 48% greater than that of VNIITU-1.Conclusion. The findings may serve as a guide for further more in-depth studies of the specific features of sorption of plasma protein molecules from critically ill patients, by employingjust this carbon sorbent. ЦСль исслСдования . Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ особСнности сорбции Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» (Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ²) in vitro ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΌ гСмосорбСнтом, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌ Π² Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠ² Бибирского отдСлСния РАН.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдовано 42 ΠΏΡ€ΠΎΠ±Ρ‹ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ ΠΎΡ‚ 14 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½ΠΈΡ‚ΠΎΠΌ Π΄ΠΎ ΠΈ послС Π³Π΅ΠΌΠΎ-сорбции. ΠŸΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΡŽ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Ρ€Π΅Π· гСмосорбСнт осущСствляли с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° Π£ΠΠ˜Π ΠžΠ›-1 ΠΏΡ€ΠΈ скорости 15 ΠΌΠ»/ΠΌΠΈΠ½, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Β«ΠΏΠ»Π°Π·ΠΌΠ°:гСмосорбСнт» β€” 10:1 ΠΈ объСмС ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ Π² 5 см3.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ гСмосорбСнт ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Π΅Ρ‚ большС Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€ Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ-Π°Π»ΡŒΡ„Π° ΠΈ ΠΈΠ½-Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½ 1-Π², ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с гСмосорбСнтом Π’ΠΠ˜Π˜Π’Π£-1, ΠΈ достовСрно Π½Π΅ измСняСт содСрТаниС ΠΈΠΌΠΌΡƒΠ½ΠΎΠ³Π»ΠΎΠ±ΡƒΠ»ΠΈΠ½ΠΎΠ² М, G, А. Борбционная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π½ΠΎΠ²ΠΎΠ³ΠΎ гСмосорбСнта Π½Π° 48% ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Ρ‚Π°ΠΊΠΎΠ²ΡƒΡŽ Ρƒ Π’ΠΠ˜Π˜Π’Π£-1.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ слуТат основаниСм для Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… ΡƒΠ³Π»ΡƒΠ±Π»Π΅Π½Π½Ρ‹Ρ… исслСдований ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ особСнностСй сорбции Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, находящихся Π² критичСском состоянии, ΠΈΠΌΠ΅Π½Π½ΠΎ Π½Π° этом ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠΌ сорбСнтС.
    • …
    corecore