117 research outputs found
Dynamics similarity design and verification of rotor system
In order to study the dynamics similarity of original model similar to normal model, the similarity criteria and the similarity ratio of the normal and original models for the rotor system were derived by the dimension analysis method. ANSYS was used to numerically calculate the critical speeds, modal shapes and harmonic response of the original and normal models of rotor system. The analysis results show that, for the rotor system, the dynamic characteristics of the normal and original models satisfy the requirement of the similarity criteria perfectly. The dynamic characteristics of the original model can be predicted accurately by the corresponding normal model
High Viral Load of Human Bocavirus Correlates with Duration of Wheezing in Children with Severe Lower Respiratory Tract Infection
Background: Human bocavirus (HBoV) is a newly discovered parvovirus and increasing evidences are available to support its role as an etiologic agent in lower respiratory tract infection (LRTI). The objective of this study is to assess the impact of HBoV viral load on clinical characteristics in children who were HBoV positive and suffered severe LRTI. Methods: Lower respiratory tract aspirates from 186 hospitalized children with severe LRTI were obtained by bronchoscopy. HBoVs were detected by real-time PCR and other 10 infectious agents were examined using PCR and/or direct fluorescent assay. Results: Thirty-one patients (24.6%) were tested positive for HBoV in the respiratory tract aspirates. Fifteen samples had a high viral load (.10 4 copies/mL) and the other sixteen samples had a low viral load (,10 4 copies/mL). The duration of presented wheezing and hospitalization was longer in children with high viral load of HBoV than that in children with low viral load. The days of wheezing showed a correlation with viral load of HBoV. Conclusion: We confirmed that HBoV was frequently detected in patients with severe LRTI. Wheezing was one of the most common symptoms presented by patients with positive HBoV. A high HBoV viral load could be an etiologic agent for LRTI
Application of a digital twin for highway tunnels based on multi-sensor and information fusion
Due to the harsh environment of highway tunnels and frequent breakdowns of various detection sensors and surveillance devices, the operational management of highway tunnels lacks effective data support. This paper analyzes the characteristics of operational surveillance data in highway tunnels. It proposes a multimodal information fusion method based on CNN–LSTM–attention and designs and develops a digital twin for highway tunnel operations. The system addresses issues such as insufficient development and coordination of the technical architecture of operation control systems, weak information service capabilities, and insufficient data application capabilities. The system also lacks intelligent decision-making and control capabilities. The developed system achieves closed-loop management of “accurate perception–risk assessment–decision warning–emergency management” for highway tunnel operations based on data-driven approaches. The engineering demonstration application underscores the system’s capacity to enhance tunnel traffic safety, diminish tunnel management costs, and elevate tunnel driving comfort
Infant 7-valent pneumococcal conjugate vaccine immunization alters young adulthood CD4+T cell subsets in allergic airway disease mouse model
Abstract7-Valent pneumococcal conjugate vaccine (PCV7) immunization in adulthood can inhibit allergic asthma in mouse model. The aim of this study is to investigate the effects of infant PCV7 immunization on young adulthood CD4+T cell subsets in a murine allergic airway disease (AAD) model. Our study indicated that infant PCV7 immunization can inhibit young adulthood airway inflammation and airway hyperresponsiveness (AHR) by inducing the production of Foxp3+Treg, Th1 cells and their cytokines IL-10 and IFN-Îł, inhibiting the production of Th2, Th17 cells and their cytokines IL-13 and IL-17A in BALB/c mice model. These results suggested that infant PCV7 immunization may serve as an effective measure to prevent young adulthood mice AAD
Bacterial Profile and Antibiotic Resistance in Patients with Diabetic Foot Ulcer in Guangzhou, Southern China: Focus on the Differences among Different Wagner’s Grades, IDSA/IWGDF Grades, and Ulcer Types
Objective. To understand the bacterial profile and antibiotic resistance patterns in diabetic foot infection (DFI) in different Wagner’s grades, IDSA/IWGDF grades, and different ulcer types in Guangzhou, in order to provide more detailed suggestion to the clinician about the empirical antibiotic choice. Methods. 207 bacteria were collected from 117 DFIs in Sun Yat-sen Memorial Hospital from Jan.1, 2010, to Dec.31, 2015. The clinical data and microbial information were analyzed. Results. The proportion of Gram-negative bacteria (GNB) was higher than Gram-positive bacteria (GPB) (54.1% versus 45.9%), in which Enterobacteriaceae (73.2%) and Staphylococcus (65.2%) were predominant, respectively. With an increasing of Wagner’s grades and IDSA/IWGDF grades, the proportion of GNB bacterial infection, especially Pseudomonas, was increased. Neuro-ischemic ulcer (N-IFU) was more susceptible to GNB infection. Furthermore, with the aggravation of the wound and infection, the antibiotic resistance rates were obviously increased. GPB isolated in ischemic foot ulcer (IFU) showed more resistance than the N-IFU, while GNB isolates were on the opposite. Conclusions. Different bacterial profiles and antibiotic sensitivity were found in different DFU grades and types. Clinician should try to stay updated in antibiotic resistance pattern of common pathogens in their area. This paper provided them the detailed information in this region
Detection of peanut seed vigor based on hyperspectral imaging and chemometrics
Rapid nondestructive testing of peanut seed vigor is of great significance in current research. Before seeds are sown, effective screening of high-quality seeds for planting is crucial to improve the quality of crop yield, and seed vitality is one of the important indicators to evaluate seed quality, which can represent the potential ability of seeds to germinate quickly and whole and grow into normal seedlings or plants. Meanwhile, the advantage of nondestructive testing technology is that the seeds themselves will not be damaged. In this study, hyperspectral technology and superoxide dismutase activity were used to detect peanut seed vigor. To investigate peanut seed vigor and predict superoxide dismutase activity, spectral characteristics of peanut seeds in the wavelength range of 400-1000 nm were analyzed. The spectral data are processed by a variety of hot spot algorithms. Spectral data were preprocessed with Savitzky-Golay (SG), multivariate scatter correction (MSC), and median filtering (MF), which can effectively to reduce the effects of baseline drift and tilt. CatBoost and Gradient Boosted Decision Tree were used for feature band extraction, the top five weights of the characteristic bands of peanut seed vigor classification are 425.48nm, 930.8nm, 965.32nm, 984.0nm, and 994.7nm. XGBoost, LightGBM, Support Vector Machine and Random Forest were used for modeling of seed vitality classification. XGBoost and partial least squares regression were used to establish superoxide dismutase activity value regression model. The results indicated that MF-CatBoost-LightGBM was the best model for peanut seed vigor classification, and the accuracy result was 90.83%. MSC-CatBoost-PLSR was the optimal regression model of superoxide dismutase activity value. The results show that the R2 was 0.9787 and the RMSE value was 0.0566. The results suggested that hyperspectral technology could correlate the external manifestation of effective peanut seed vigor
YOLOC-tiny: a generalized lightweight real-time detection model for multiripeness fruits of large non-green-ripe citrus in unstructured environments
This study addresses the challenges of low detection precision and limited generalization across various ripeness levels and varieties for large non-green-ripe citrus fruits in complex scenarios. We present a high-precision and lightweight model, YOLOC-tiny, built upon YOLOv7, which utilizes EfficientNet-B0 as the feature extraction backbone network. To augment sensing capabilities and improve detection accuracy, we embed a spatial and channel composite attention mechanism, the convolutional block attention module (CBAM), into the head’s efficient aggregation network. Additionally, we introduce an adaptive and complete intersection over union regression loss function, designed by integrating the phenotypic features of large non-green-ripe citrus, to mitigate the impact of data noise and efficiently calculate detection loss. Finally, a layer-based adaptive magnitude pruning strategy is employed to further eliminate redundant connections and parameters in the model. Targeting three types of citrus widely planted in Sichuan Province—navel orange, Ehime Jelly orange, and Harumi tangerine—YOLOC-tiny achieves an impressive mean average precision (mAP) of 83.0%, surpassing most other state-of-the-art (SOTA) detectors in the same class. Compared with YOLOv7 and YOLOv8x, its mAP improved by 1.7% and 1.9%, respectively, with a parameter count of only 4.2M. In picking robot deployment applications, YOLOC-tiny attains an accuracy of 92.8% at a rate of 59 frames per second. This study provides a theoretical foundation and technical reference for upgrading and optimizing low-computing-power ground-based robots, such as those used for fruit picking and orchard inspection
Nanomaterial-based cancer immunotherapy
Cancer immunotherapy has gained a lot of attention for its unique advantages and promising future. Dendritic cells (DCs), as potential professional antigen-presenting cells (APCs), make a significant contribution to effective cytotoxic T cell (CTL) response for recognizing, processing and presenting antigens to naive T cells and releasing cytokines at the same time. With the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy based on their advantages, such as huge specific surface area, delivery function, and controllable surface chemistry. This review focuses on summarizing the existing work about nanomaterial-based cancer immunotherapy in detail. Firstly, nanomaterials, such as liposomes, polymers and metals, can deliver antigens and/or adjuvants to induce or promote the CTL cells, helping the immune system to kill tumor cells efficiently. Secondly, some nanomaterials have imaging functions in order to observe the developmental stage of the immune response, such as gold nanoparticles with CT imaging and Fe3O4 with magnetic resonance imaging (MRI). Thirdly, even some nanomaterials themselves can also act as adjuvants to promote the immune response. Fourthly, there are some artificial APCs (aAPCs) made from nanomaterials which were coated with co-stimulatory molecules and MHC proteins loaded with antigen peptides. Besides, nanomaterials can induce the combination therapy to achieve synergistic efficacy, such as immunotherapy combined with photothermal therapy (PTT) or radiotherapy. In the end, combining with the current development trend of nanomaterial-based cancer immunotherapy, we bring forward some design advice and give a positive perspective of this field
Impact of Land Input on Economic Growth at Different Stages of Development in Chinese Cities and Regions
Regional industrial structure and land use patterns differ between the different stages of development, and the impact of land input on economic growth may vary. On the basis of land supply data obtained from http://www.landchina.com/ for 2010–2015, this study used an econometric model to explore the impact of land input on the economic growth of Chinese cities and regions at the different stages of development. Empirical results show that the development of 352 cities and regions in China in 2015 can be divided into five stages; namely, primary production stage (PPS), primary industrialization stage (PIS), middle industrialization stage (MIS), later industrialization stage (LIS), and developed stage (DS). The economic growth of cities and regions at the LIS or DS was significantly dependent on capital and labor input rather than land input. The land input of cities and regions at PPS, PIS, and MIS significantly promoted economic growth. This article enriches the study of regional economic growth and is beneficial to further understanding of the impact of land input on the economic growth of China
- …