14 research outputs found

    Structure and lithium transport pathways in Li<sub>2</sub>FeSiO<sub>4</sub> cathodes for lithium batteries

    Get PDF
    The importance of exploring new low-cost and safe cathodes for large-scale lithium batteries has led to increasing interest in Li(2)FeSiO(4). The structure of Li(2)FeSiO(4) undergoes significant change on cycling, from the as-prepared γ(s) form to an inverse β(II) polymorph; therefore it is important to establish the structure of the cycled material. In γ(s) half the LiO(4), FeO(4), and SiO(4) tetrahedra point in opposite directions in an ordered manner and exhibit extensive edge sharing. Transformation to the inverse β(II) polymorph on cycling involves inversion of half the SiO(4), FeO(4), and LiO(4) tetrahedra, such that they all now point in the same direction, eliminating edge sharing between cation sites and flattening the oxygen layers. As a result of the structural changes, Li(+) transport paths and corresponding Li-Li separations in the cycled structure are quite different from the as-prepared material, as revealed here by computer modeling, and involve distinct zigzag paths between both Li sites and through intervening unoccupied octahedral sites that share faces with the LiO(4) tetrahedra

    Origin of Poor Cyclability in Li2NInSiO4 from First-Principles Calculations: Layer Exfoliation and Unstable Cycled Structure

    No full text
    Good cyclability is essential for the potential application of cathode materials. Here, we investigate the structural stability of two-dimensional (2D) Li-layered and three-dimensional (3D) structured polymorphs of Li 2FeSiO4 and Li2MnSiO4 using the density functional theory calculations. We find that all 2D Li-layered polymorphs of both materials are unstable upon full delithiation owing to layer exfoliation, which can lead to an amorphous structure. However, in contrast to the fact that the amorphization of Li2FeSiO4 can be prevented by the formation of the 3D cycled structure that is energetically stable, the 3D cycled structure of Li2MnSiO4 is found to be unstable during delithiationlithiation cycling. As a result, Li 2MnSiO4 easily undergoes amorphization and shows a poor cyclability.close2
    corecore