11 research outputs found

    SDSS superclusters: morphology and galaxy content

    Full text link
    We compare the galaxy populations in superclusters of different morphology in the nearby Universe (180 < d < 270 Mpc) to see whether the inner structure and overall morphology of superclusters are important in shaping galaxy properties in superclusters. Supercluster morphology has been found with Minkowski functionals. We analyse the probability density distributions of colours, morphological types, stellar masses, star formation rates (SFR) of galaxies, and the peculiar velocities of the main galaxies in groups in superclusters of filament and spider types, and in the field. We show that the fraction of red, early-type, low SFR galaxies in filament-type superclusters is higher than in spider-type superclusters; in low-density global environments their fraction is lower than in superclusters. In all environments the fraction of red, high stellar mass, and low SFR galaxies in rich groups is higher than in poor groups. In superclusters of spider morphology red, high SFR galaxies have higher stellar masses than in filament-type superclusters. Groups of equal richness host galaxies with larger stellar masses, a larger fraction of early-type and red galaxies, and a higher fraction of low SFR galaxies, if they are located in superclusters of filament morphology. The peculiar velocities of the main galaxies in groups from superclusters of filament morphology are higher than in those of spider morphology. Groups with higher peculiar velocities of their main galaxies in filament-type superclusters are located in higher density environment than those with low peculiar velocities. There are significant differences between galaxy populations of the individual richest superclusters. Therefore both local (group) and global (supercluster) environments and even supercluster morphology play an important role in the formation and evolution of galaxies.Comment: Comments: 14 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    SDSS DR7 superclusters. Principal component analysis

    Full text link
    We apply the principal component analysis and Spearman's correlation test to study the properties of superclusters drawn from the SDSS DR7. We analyse possible selection effects in the supercluster catalogue, study the physical and morphological properties of superclusters, find their possible subsets, and determine scaling relations for superclusters. We show that the parameters of superclusters do not correlate with their distance. The correlations between the physical and morphological properties of superclusters are strong. Superclusters can be divided into two populations according to their total luminosity. High-luminosity superclusters form two sets, more elongated systems with the shape parameter K_1/K_2 0.5. The first two principal components account for more than 90% of the variance in the supercluster parameters and define the fundamental plane, which characterises the physical and morphological properties of superclusters. We use principal component analysis to derive scaling relations for superclusters, in which we combine the physical and morphological parameters of superclusters. Structure formation simulations for different cosmologies, and more data about the local and high redshift superclusters are needed to understand better the evolution and the properties of superclusters.Comment: 13 pages, 10 figures, accepted for publication in Astronomy and Astrophysic

    A possible Chandra and Hubble Space Telescope detection of extragalactic WHIM towards PG 1116+215

    Get PDF
    We have analysed Chandra low energy transmission grating and XMM-Newton Reflection Grating Spectrometer (RGS) spectra towards the z = 0.177 quasar PG 1116+215, a sightline that is rendered particularly interesting by the Hubble Space Telescope (HST) detection of several OVI and HI broad Lyman alpha absorption (BLA) lines that may be associated with the warm-hot intergalactic medium (WHIM). We performed a search for resonance K alpha absorption lines from OVII and OVIII at the redshifts of the detected far-ultraviolet lines. We detected an absorption line in the Chandra spectra at the 5.2 sigma confidence level at wavelengths corresponding to OVIII K alpha at z = 0.0911 +/- 0.0004 +/- 0.0005 (statistical followed by systematic error). This redshift is within 3 sigma of that of an HI broad Lyman alpha of b similar or equal to 130 km s(-1) (corresponding to a temperature of log T(K) similar or equal to 6.1) at z = 0.092 79 +/- 0.000 05. We have also analysed the available XMM-Newton RGS data towards PG 1116+215. Unfortunately, the XMM-Newton data are not suitable to investigate this line because of instrumental features at the wavelengths of interest. At the same redshift, the Chandra and XMM-Newton spectra have OVII K alpha absorption-line features of significance 1.5 sigma and 1.8 sigma, respectively. We also analysed the available Sloan Digital Sky Survey (SDSS) spectroscopic galaxy survey data towards PG 1116+215 in the redshift range of interest. We found evidence for a galaxy filament that intersect the PG 1116+215 sightline and additional galaxy structures that may host WHIM. The HI BLA and the OVIII K alpha absorbers are within a few Mpc of the filament (assuming that redshifts track Hubble flow distances) or consistent with gas accreting on to the filament from either direction relative to the sightline with velocities of a few x 100 km s(-1). The combination of HST, Chandra, XMM-Newton and SDSS data indicates that we have likely detected a multi-temperature WHIM at z similar or equal to 0.091-0.093 towards PG 1116+215. The OVIII Ka absorption line indicates gas at high temperature, log T(K) >= 6.4, with a total column density of the order of log N-H(cm(2)) >= 20 and a baryon overdensity delta(b) similar to 100-1000 for sightline lengths of L = 1-10 Mpc. This detection highlights the importance of BLA absorption lines as possible signposts of high-temperature WHIM filaments

    Sloan Great Wall as a complex of superclusters with collapsing cores

    Get PDF
    Context. The formation and evolution of the cosmic web is governed by the gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). In the cosmic web, galaxy superclusters or their high-density cores are the largest objects that may collapse at present or during the future evolution.Aims. We study the dynamical state and possible future evolution of galaxy superclusters from the Sloan Great Wall (SGW), the richest galaxy system in the nearby Universe.Methods. We calculated supercluster masses using dynamical masses of galaxy groups and stellar masses of galaxies. We employed normal mixture modelling to study the structure of rich SGW superclusters and search for components (cores) in superclusters. We analysed the radial mass distribution in the high-density cores of superclusters centred approximately at rich clusters and used the spherical collapse model to study their dynamical state.Results. The lower limit of the total mass of the SGW is approximately M = 2.5 x 10(16) h(-1) M-circle dot. Different mass estimators of superclusters agree well, the main uncertainties in masses of superclusters come from missing groups and clusters. We detected three high-density cores in the richest SGW supercluster (SCl 027) and two in the second richest supercluster (SCl 019). They have masses of 1.2-5.9 x 10(15) h(-1) M-circle dot and sizes of up to approximate to 60 h(-1) Mpc. The high-density cores of superclusters are very elongated, flattened perpendicularly to the line of sight. The comparison of the radial mass distribution in the high-density cores with the predictions of spherical collapse model suggests that their central regions with radii smaller than 8 h(-1) Mpc and masses of up to M = 2 x 10(15) h(-1) M-circle dot may be collapsing.Conclusions. The rich SGW superclusters with their high-density cores represent dynamically evolving environments for studies of the properties of galaxies and galaxy systems

    Shell-like structures in our cosmic neighbourhood

    Get PDF
    Context. Signatures of the processes in the early Universe are imprinted in the cosmic web. Some of them may define shell-like structures characterised by typical scales. Examples of such structures are shell-like systems of galaxies, which are interpreted as a signatures of the baryon acoustic oscillations.Aims. We search for shell-like structures in the distribution of nearby rich clusters of galaxies drawn from the SDSS DR8.Methods. We calculated the distance distributions between rich clusters of galaxies and groups and clusters of various richness, searched for the maxima in the distance distributions and selected candidates of shell-like structures. We analysed the space distribution of groups and clusters that form shell walls.Results. We find six possible candidates of shell-like structures, in which galaxy clusters have the maximum in their distance distribution to other galaxy groups and clusters at a distance of about 120-130 h(-1) Mpc. Another, less probable maximum is found at a distance of about 240 h(-1) Mpc. The rich galaxy cluster A1795, which is the central cluster of the Bootes supercluster, has the highest maximum in the distance distribution of all other surrounding groups and clusters in our rich cluster sample. It lies at a distance of about 120 h(-1) Mpc. The structures of galaxy systems that cause this maximum form an almost complete shell of galaxy groups, clusters, and superclusters. The richest systems in the nearby universe, the Sloan Great Wall, the Corona Borealis supercluster, and the UrsaMajor supercluster, are among them. The probability that we obtain maxima like this from random distributions is lower than 0.001.Conclusions. Our results confirm that shell-like structures can be found in the distribution of nearby galaxies and their systems. The radii of the possible shells are larger than expected for a baryonic acoustic oscillations (BAO) shell (approximate to 109 h(-1) Mpc versus approximate to 120-130 h(-1) Mpc), and they are determined by very rich galaxy clusters and superclusters. In contrast, BAO shells are barely seen in the galaxy distribution. We discuss possible consequences of these differences

    The Sloan Great Wall. Rich clusters

    No full text
    We present the results of the study of the substructure and galaxy content of ten rich clusters of galaxies in three different superclusters of the Sloan Great Wall. We determine the substructure in clusters using the 'Mclust' package from the 'R' statistical environment and analyse their galaxy content. We analyse the distribution of the peculiar velocities of galaxies in clusters and calculate the peculiar velocity of the first ranked galaxy. We show that clusters in our sample have more than one component; in some clusters different components also have different galaxy content. We find that in some clusters with substructure the peculiar velocities of the first ranked galaxies are large. All clusters in our sample host luminous red galaxies. They can be found both in the central areas of clusters as well as in the outskirts, some of them have large peculiar velocities. About 1/3 of red galaxies in clusters are spirals. The scatter of colours of red ellipticals is in most clusters larger than that of red spirals. The presence of substructure in rich clusters, signs of possible mergers and infall, as well as the large peculiar velocities of the first ranked galaxies suggest that the clusters in our sample are not yet virialized. We present merger trees of dark matter haloes in an N-body simulation to demonstrate the formation of present-day dark matter haloes via multiple mergers during their evolution. In simulated dark matter haloes we find a substructure similar to that in observed clusters
    corecore