6 research outputs found

    Recombinant Human HPS Protects Mice and Nonhuman Primates from Acute Liver Injury

    No full text
    Acute liver injury shares a common feature of hepatocytes death, immune system disorders, and cellular stress. Hepassocin (HPS) is a hepatokine that has ability to promote hepatocytes proliferation and to protect rats from D-galactose (D-Gal)- or carbon tetrachloride (CCl4)-induced liver injury by stimulating hepatocytes proliferation and preventing the high mortality rate, hepatocyte death, and hepatic inflammation. In this paper, we generated a pharmaceutical-grade recombinant human HPS using mammalian cells expression system and evaluated the effects of HPS administration on the pathogenesis of acute liver injury in monkey and mice. In the model mice of D-galactosamine (D-GalN) plus lipopolysaccharide (LPS)-induced liver injury, HPS treatment significantly reduced hepatocyte death and inflammation response, and consequently attenuated the development of acute liver failure. In the model monkey of D-GalN-induced liver injury, HPS administration promoted hepatocytes proliferation, prevented hepatocyte apoptosis and oxidation stress, and resulted in amelioration of liver injury. Furthermore, the primary pharmacokinetic study showed natural HPS possesses favorable pharmacokinetics; the acute toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of HPS-treated mice, implying the clinical potential of HPS. Our results suggest that exogenous HPS has protective effects on acute liver injury in both mice and monkeys. HPS or HPS analogues and mimetics may provide novel drugs for the treatment of acute liver injury

    Safety and clinical activity with an anti-PD-1 antibody JS001 in advanced melanoma or urologic cancer patients

    No full text
    Abstract Background JS001, a humanized IgG4 monoclonal antibody against the programmed death-1 (PD-1) receptor, blocks the interaction of PD-1 with its ligands and promotes T cell activation in preclinical studies. This phase I study is designed to evaluate the safety, tolerability, and clinical activity of JS001 in advanced melanoma or urologic cancer patients who are refractory to standard systemic therapy. Patients and methods In the dose escalation cohorts, subjects initially received a single-dose, intravenous infusion of JS001, and were followed for 28 days followed by multi-dose infusions every 2 weeks. In the dose expansion cohorts, subjects received multi-dose infusions every 2 weeks. Clinical response was evaluated after each 8-week treatment cycle according to RECIST v1.1 criteria. Results Thirty-six subjects diagnosed with advanced melanoma (n = 22), urothelial cancer (UC) (n = 8), or renal cell cancer (RCC) (n = 6) were enrolled. Melanoma subjects included 14 acral and 4 mucosal subtypes. JS001 was well tolerated, and no dose-limiting toxicity was observed. By the safety data cutoff date, 100% of subjects had treatment-related adverse events (TRAE) with most adverse events being grade 1 or 2, and ≥ grade 3 TRAEs occurred in 36%. Among all 36 subjects, 1 confirmed complete response (acral melanoma), 7 confirmed partial responses (2 acral melanoma, 1 mucosal melanoma, 2 UC, and 2 RCC), and 10 stable disease were observed, for an objective response rate of 22.2% (95% CI, 10.1 to 39.2), and a disease control rate of 50.0% (95% CI, 32.9 to 67.1). Clinical responses were correlated with PD-L1 expression on tumor cells, the presence of tumor infiltrating lymphocytes (TIL), baseline tumor volume, ECOG performance status, serum LDH levels, high percentage of activated CD8+ T cells and CD3− CD16+ CD54+ NK cells in the peripheral blood as well as tumor mutational burden (TMB). Conclusion JS001 was well tolerated and demonstrated promising anti-tumor activity in UC and RCC as well as in previously underexplored acral and mucosal melanoma subtypes. Subjects with an immune-active profile in the tumor microenvironment or in peripheral blood responded favorably to JS001 treatment. The completion of the current phase I study has led to the initiation of the first prospective anti-PD-1 registration trial in Asia focusing on acral and mucosal melanoma subtypes, representative of the regional disease epidemiology. Trial registration Clinical Trial ID: NCT02836795, registered July 19, 2016, retrospectively registered

    Nudel Modulates Kinetochore Association and Function of Cytoplasmic Dynein in M Phase

    No full text
    The microtubule-based motor cytoplasmic dynein/dynactin is a force generator at the kinetochore. It also transports proteins away from kinetochores to spindle poles. Regulation of such diverse functions, however, is poorly understood. We have previously shown that Nudel is critical for dynein-mediated protein transport, whereas mitosin, a kinetochore protein that binds Nudel, is involved in retention of kinetochore dynein/dynactin against microtubule-dependent stripping. Here we demonstrate that Nudel is required for robust localization of dynein/dynactin at the kinetochore. It localizes to kinetochores after nuclear envelope breakdown, depending mostly (∼78%) on mitosin and slightly on dynein/dynactin. Depletion of Nudel by RNA interference (RNAi) or overexpression of its mutant incapable of binding either Lis1 or dynein heavy chain abolishes the kinetochore protein transport and mitotic progression. Similar to mitosin RNAi, Nudel RNAi also leads to increased stripping of kinetochore dynein/dynactin in the presence of microtubules. Taking together, our results suggest a dual role of kinetochore Nudel: it activates dynein-mediated protein transport and, when interacting with both mitosin and dynein, stabilizes kinetochore dynein/dynactin against microtubule-dependent stripping to facilitate the force generation function of the motor

    Some Recent Advances in Liquefied Natural Gas (LNG) Production, Spill, Dispersion, and Safety

    No full text
    The global demand of liquefied natural gas (LNG) has risen rapidly in recent years for the reasons of energy security and sustainable development. This has led to considerable recent research interests and efforts in the LNG production chain and associated risks in handling, storage, and transport of LNG, largely driven by the intrinsic process safety issues of LNG, potential terrorist threats, and public confidence in LNG safety. This review presents an overview on some recent advances in the LNG value chain, covering upstream gas production and gathering, liquefaction, shipping, and regasification processes. Recent developments in the experimentation and modeling of LNG spills associated with the LNG value chain are then summarized, covering the events following a LNG spill, including LNG pool formation, vapor dispersion, and combustion. The consequent hazards and safety issues are also discussed, with a focus on the methods for improving the safety of personnel, facilities, and ships. The key technical gaps in the related research areas have been identified, and future research directions are outlined
    corecore