11 research outputs found

    Causal relationship between circulating lipid traits and periodontitis: univariable and multivariable Mendelian randomization

    Get PDF
    Introduction: The correlation between dyslipidemia and periodontitis is revealed through epidemiological studies. However, the results are affected by several confounding factors. This study aims to elucidate the genetic causal association between circulating lipid traits and periodontitis by two-sample Mendelian randomization (MR) analysis.// Methods: After the different screening processes, two cohorts of circulating lipid traits from the UK Biobank were used as exposure data, including five circulating lipid traits. The Periodontitis cohort was selected from the GeneLifestyle Interactions in Dental Endpoints (GLIDE) consortium as outcome data. In univariable MR, the inverse variance weighted (IVW) was used in conjunction with six additional analytical methods to assess causality. The Cochran Q test, IGX2 statistic, MR-PRESSO, and MR-Egger intercept were used to quantify heterogeneity and pleiotropy. The multivariable MR-IVW (MVMR-IVW) and MVMR-robust were mainly used as analytical methods in the multiple MR analyses.// Results: The IVW estimates showed that genetically predicted Apolipoprotein A1 (apo A1) [odds ratio (OR)=1.158, 95% confidence interval (CI)=1.007–1.331, P-value=0.040] was potentially associated with the risk of periodontitis, but the statistical power of the results was low. Multivariable MR analysis did not reveal any significant causal relationship between apo A1 and periodontitis (OR=0.72, 95% CI=0.36–1.41, P-value=0.34). In the validation cohort, there was also no significant causal relationship between apo A1 and periodontitis (OR=1.079, 95% CI=0.903–1.290, P-value=0.401). Meanwhile, genetically predicted Apolipoprotein B (apo B), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) (all P-values>0.05) were not significantly associated with the risk of periodontitis causal inference.// Conclusion: This MR analysis was unable to provide genetic evidence for the influence of these five circulating lipid traits on periodontitis. However, a more extensive study with a more comprehensive circulating lipid profile and periodontitis data is needed due to study limitations

    The absence of one’s intimate partner promotes dyadic competition through enhanced interbrain synchronization between opponents

    Get PDF
    Competition is a common occurrence in life, but the influence of intimate relationships on people’s competitiveness remains unknown. Grounded in Darwin’s theory of sexual selection, this study utilized EEG hyperscanning technology to investigate the influence of the presence of romantic partners and the gender of competitors on the interbrain synchronization of female individuals during competitive contexts. The research results showed that in competitive interactions, there was a significant increase in Theta and Alpha frequency band activity between females and their competitors. Interbrain synchronization was strongest when their partners were not nearby and females competed with same gender competitors. The research results indicate that intimate companionship has an impact on the early alertness and late cognitive execution mechanisms of female individuals in competition, and due to intimate relationships, females pay more attention to same-gender competitors. This study demonstrates that the presence of intimate partners can affect a female’s competitive state and brain synchronization with opponents of different genders, improving the theoretical explanation of intimate relationships and competitive interactions

    Spatial Pattern and Temporal Stability of Root-Zone Soil Moisture during Growing Season on a Larch Plantation Hillslope in Northwest China

    No full text
    Soil moisture plays a decisive role for tree growth and forest ecosystems services supply in dryland regions. Hence, it is necessary to clarify the spatio-temporal variation of soil moisture under field conditions. This study selected a hillslope in the Liupan Mountains covered by the plantation of Larix principis-rupprechtii Mayr (larch), a main afforestation tree species in north and northwest China. The volumetric soil moisture (VSM) in root zone layers was monitored with a time interval of about 15 days during the growing season (from May to October) in 2016 at 48 points on this hillslope. The aim was to evaluate the spatial pattern and temporal stability of soil moisture at slope scale. The results showed a moderate spatial variability of VSM in each soil layer, with the variation coefficients range of 17.12–22.63%. The spatial variability of VSM showed a dependence on the soil wetness and a threshold effect, it increased with rising VSM until the VSM reached a threshold of about 15%, but thereafter decreased. The mean relative difference (MRD) among the 48 points ranged from −30.56% to 27.20%, −29.89% to 39.58%, and −28.13% to 33.71% for the soil layers of 0–20, 20–40, and 40–60 cm, respectively. The associated standard deviation (SDRD) (and range) was 11.38% (5.20–26.06%), 8.28% (4.64–15.63%), and 6.51% (2.00–14.16%) for the soil layers of 0–20, 20–40, and 40–60 cm, respectively. The high Spearman’s rank coefficients (p < 0.05) among the measuring dates at each soil layer indicated that the spatial distribution of VSM in the root zone had strong temporal stability. The decrease of Spearman’ rank correlation coefficient and mean SDRD with rising soil depth indicated an increasing temporal stability of VSM with rising soil depth. The mean VSM of the three soil layers on the entire hillslope can be estimated by the direct method (using representative points determined by the index of temporal stability (ITS)) successfully, and these representative points determined by ITS were mainly located at the points with a ratio of field capacity to leaf area index (LAI) close to the slope mean. Moreover, the mean VSM of the three soil layers on the entire hillslope can also be estimated by indirect method (using the time-stable points determined by mean absolute bias error (MABE) and considering the offset between slope mean VSM and observed VSM at time-stable points), and the prediction accuracy of the indirect method was better than the direct method. Significant correlation between MRD and soil bulk density, field capacity, capillary porosity, and LAI were observed for all soil layers, indicating that both the water-retention ability in root zone soil (expressed mainly by field capacity) and water-consumption ability of trees (expressed mainly by canopy LAI) are the main factors controlling the spatial pattern of root-zone VSM on the larch plantation hillslope studied

    Intra-Annual Variation of Stem Radius of Larix principis-rupprechtii and Its Response to Environmental Factors in Liupan Mountains of Northwest China

    No full text
    Fine-resolution studies on the stem radius variation at short timescale can provide useful information about the tree growth process and the major environmental variables that trigger and drive stem radius variation. This study investigated the stem radius variation of Larix principis-rupprechtii Mayr growing in the semi-humid Liupan Mountains of Northwest China at daily and seasonal scales using high-resolution automatic band dendrometers from May to October in 2015. The results showed that the stem radius variation of Larix principis-rupprechtii has a clear diurnal pattern which can be divided into contraction, recovery, and increment phases; and also a seasonal pattern which can be divided into three stages: (1) the rapid growth stage in spring (stage 1) with the radius increment of 94.0% of the total in the entire growing period; (2) the persistent shrinkage stage in the dry summer (stage 2) with a negative diurnal radius increment for most days, and a significantly larger amplitude of stem contraction and recovery than other stages; (3) the minimal growth stage in autumn (stage 3), mainly caused by the lowering temperature and leaf area. The amplitude of stem contraction was significantly correlated with air temperature (both the mean and highest value) in all three stages: vapor pressure deficit (VPD) in stage 1; relative humidity (RH), VPD and soil moisture (Ms) in stage 2; and soil temperature (Ts) in stage 3. This indicates that the stem radius contraction was mainly controlled by the factors influencing tree transpiration rate in spring and autumn stages, but jointly controlled by the factors influencing both the tree transpiration rate and the soil moisture availability in the dry summer stage. The factors controlling the stem radius recovery was similar to the stem contraction. The amplitude of stem increment was significantly correlated with the rainfall amount and air temperature (both the mean and highest value) in stage 1 and 3, Ms in stage 2, and the lowest air temperature and Ts in stage 3. This indicates that temperature and precipitation were the key factors controlling the stem radius increment in the spring and autumn stages, and soil moisture was the main factor limiting the stem radius increment in the dry summer stage at the study site with semi-humid climate in Northwest China

    PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per- and polyfluoroalkyl substances: An integrated approach

    No full text
    Background: Per- and polyfluoroalkyl substances (PFAS) are persistent and ubiquitous environmental contaminants with well-documented hepatotoxicity. However, the mechanistic linkage between PFAS exposure and non-alcoholic fatty liver disease (NAFLD) remains largely elusive. Objectives: This study aimed to explore PFAS-to-NAFLD link and the relevant molecular mechanisms. Methods: The cross-sectional analyses using National Health and Nutrition Examination Survey (NHANES) data were conducted to investigate the association between PFAS exposure and NAFLD. A combination of in silico toxicological analyses, bioinformatics approaches, animal experiments, and in vitro assays was used to explore the molecular initiating events (MIEs) and key events (KEs) in PFAS-induced hepatic lipid metabolism disorders. Results: The cross-sectional analyses with NHANES data revealed the significant association between PFAS exposure and hepatic steatosis/NAFLD. The in silico toxicological analyses showed that PPARα activation induced by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), prototypical representatives of PFAS, is the critical MIE associated with NAFLD-predominant liver diseases. Transcriptome-based bioinformatic annotation and analyses identified that transcriptional upregulation of hepatic acyl-CoA oxidase 1 (ACOX1) in PPARα-regulated peroxisomal β-oxidation pathway was the KE involved with PFOA/PFOS-perturbed hepatic lipid metabolic pathways in humans, mice and rats. The in vivo and in vitro assays further verified that ACOX1-mediated oxidative stress contributed to mitochondrial compromise and lipid accumulation in PFOA/PFOS-exposed mouse hepatocytes, which could be mitigated by co-treatment with ACOX1 inhibitor and mitochondria ROS scavenger. Additionally, we observed that besides PFOA and PFOS, hepatic ACOX1 exhibited good-fit response to short-term exposures of long-chain (C7-C10) perfluoroalkyl carboxylic acids (PFHpA, PFNA, PFDA) and perfluoroalkyl sulfonic acids (PFHpS, PFDS) in human hepatocyte spheroids through benchmark dose (BMD) modeling. Conclusion: Our study unveils a novel molecular target for PFAS-induced hepatic lipid metabolic disorders, shedding new light on prediction, assessment, and mitigation of PFAS hepatotoxicity
    corecore