151 research outputs found
Ecodriving for Reduction of Bus Transit Emission with Vehicleâs Hybrid Dynamic Model
This paper formulates a global ecodriving optimal control to advise the green driving speed for bus transit to minimize the exhaust emission using Vehicle-to-Infrastructure (V2I) communication. Assuming communication between vehicles and infrastructure (V2I) and knowledge of traffic signal timings and waiting passengers at stations are known, an optimal driving speed is proposed to minimize the total vehicle emissions of the bus route. The dwell time of the bus transit at each station which includes two parts is proposed. A traffic lights timing model is employed as constraints to control the formation of the green wave band. Vehicle specific power (VSP) model is further applied to evaluate the exhaust emission level linked with the speed and acceleration of the bus transit. An approximate sixteen-kilometer traffic network including fourteen intersections and fifteen stations of Beijing bus transit line 1 in Chaoyang District, Beijing, is chosen to investigate the performance of the developed ecodriving approach
Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system
TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4+ T cell response, while only R848 and Poly I:C induced CD8+ cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans
Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion
Group 3 innate lymphoid cells (ILC3s) have demonstrated roles in promoting antibacterial immunity, maintaining epithelial barrier function, and supporting tissue repair. ILC3 alterations are associated with chronic inflammation and inflammatory disease; however, the characteristics and relevant regulatory mechanisms of this cell population in HIV-1 infection are poorly understood due in part to a lack of a robust model. Here, we determined that functional human ILC3s develop in lymphoid organs of humanized mice and that persistent HIV-1 infection in this model depletes ILC3s, as observed in chronic HIV-1-infected patients. In HIV-1-infected mice, effective antiretroviral therapy reversed the loss of ILC3s. HIV-1-dependent reduction of ILC3s required plasmacytoid dendritic cells (pDCs), IFN-I, and the CD95/FasL pathway, as targeted depletion or blockade of these prevented HIV-1-induced ILC3 depletion in vivo and in vitro, respectively. Finally, we determined that HIV-1 infection induces CD95 expression on ILC3s via a pDC-and IFN-I-dependent mechanism that sensitizes ILC3s to undergo CD95/FasL-mediated apoptosis. We conclude that chronic HIV-1 infection depletes ILC3s through pDC activation, induction of IFN-I, and CD95-mediated apoptosis
HIV-1 can infect northern pig-tailed macaques (Macaca leonina) and form viral reservoirs in vivo
Viral reservoirs of HIV-1 are a major obstacle for curing AIDS. The novel animal models that can be directly infected with HIV-1 will contribute to develop effective strategies for eradicating infections. Here, we inoculated 4 northern pig-tailed macaques (NPM) with the HIV-1 strain HIV-1NL4.3 and monitored the infection for approximately 3 years (150 weeks). The HIV-1-infected NPMs showed transient viremia for about 10 weeks after infection. However, cell-associated proviral DNA and viral RNA persisted in the peripheral blood and lymphoid organs for about 3 years. Moreover, replication-competent HIV-1 could be successfully recovered from peripheral blood mononuclear cells (PBMCs) during long-term infection. The numbers of resting CD4+ T cells in HIV-1 infected NPMs harboring proviruses fell within a range of 2- to 3-log10 per million cells, and these proviruses could be reactivated both ex vivo and in vivo in response to co-stimulation with the latency-reversing agents JQ1 and prostratin. Our results suggested that NPMs can be infected with HIV-1 and a long-term viral reservoir was formed in NPMs, which might serve as a potential model for HIV-1 reservoir research
Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin
<p>Abstract</p> <p>Background</p> <p>Tuberculosis is an infectious bacterial disease in humans caused primarily by <it>Mycobacterium tuberculosis</it>, and infects one-third of the world's total population. <it>Mycobacterium bovis </it>bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated <it>M. bovis </it>BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions.</p> <p>Results</p> <p>Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well in our work.</p> <p>Conclusions</p> <p>In this study, we utilized LC-MS/MS in combination with blue native PAGE to characterize modular components of multiprotein complexes in BCG membrane fractions. The results demonstrated that the proteomic strategy was a reliable and reproducible tool for analysis of BCG multiprotein complexes. The identification in our study may provide some evidence for further study of BCG protein interaction.</p
Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis
FoxP3+CD4+CD25+ regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed
Comparison theorems of tempered fractional differential equations
In this paper, we study the first comparison theorem and the second comparison theorem of Caputo (and RiemannâLiouville) tempered fractional differential equations with order . The detailed proof process is given. At the same time, continuous dependence of the solutions of the equation on the parameter is analyzed, which is used in the previous process of proof. In addition, we give two examples to support the theoretical analysis
- âŠ