94 research outputs found

    Harnessing the joint effect of approach bridges in arch bridge construction: an analytical study on thrust stiffness and elevation error mitigation

    Get PDF
    Achieving full equilibrium for the horizontal component force of the backstay in cable-stayed arch bridges is challenging, and the stiffness of the buckle tower has a notable influence on the overall shape of the main arch structure. Increased stiffness in the buckle tower leads to reduced construction complexity. Therefore, this study proposed a method of enhancing the longitudinal thrust stiffness of the buckle tower using the joint effect of approach bridges. A sensitivity analysis was conducted on the approach bridgeā€“composite buckle tower structure to determine the optimal combination method, resulting in the formulation of an analytical expression for the thrust stiffness of this structure. In this study, numerical analysis was performed to explore the composition mechanism of the thrust stiffness influenced by the pierā€“girder connection, and we discussed the applicability of the joint effect of approach bridges during the cantilever assembly process of arch ribs. The following conclusions were obtained: 1) prior to installing the main girder of the approach bridge, when the steel buckle tower and the junction pier have already been secured, the most effective approach is to form a ā€œTā€ rigid structure by firmly connecting the main girder of the approach bridge with the composite buckle tower. This configuration provides self-weight deflection and pierā€“girder rotation restriction effects. 2) The study presents analytical formulas for the completely rigid pierā€“girder connection of the approach bridgeā€“composite buckle tower structure, partially rigid pierā€“girder connection, and pre-deviation. Combined with the calculation program, this can guide structural design. 3) When a large downward elevation error of the arch ribs occurs in the middle and later stages, the cable force needed to install new arch segments becomes overly large. Therefore, the joint effect of approach bridges can be utilized to substitute for a portion of the cable force, effectively reducing potential elevation errors that might arise in subsequent arch ribs in the absence of this joint effect

    An outbreak of aseptic meningitis caused by a distinct lineage of coxsackievirus B5 in China

    Get PDF
    SummaryIn 2009, an outbreak of aseptic meningitis caused by coxsackievirus B5 (CVB5) occurred in China. Epidemiological investigations of this outbreak revealed that the proportion of severe cases (14/43, 33%) was higher than in other outbreaks associated with CVB5 in China. Phylogenetic analysis of the entire VP1 sequences demonstrated that the CVB5 isolates from the severe cases form a distinct lineage belonging to genogroup E with the Shandong isolates of 2009. A substitution of serine (S) to asparagine (N) at amino acid 95 in the VP1 region may be a major virulence determinant for the virus. Our findings suggest that this new lineage of CVB5 is circulating in China. Further genetic studies are needed in order to gain a better insight into the genetic variability of CVB5 isolates and the relationship with pathogenicity

    A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Get PDF
    BACKGROUND: The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV), however, possesses several mechanisms to evade complement-mediated lysis (CoML) and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH) through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. PRESENTATION OF THE HYPOTHESIS: Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively) linked to a complement-activating human IgG1 Fc domain ((anti-gp120 Ɨ anti-C3d)-Fc), can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. TESTING THE HYPOTHESIS: Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 Ɨ anti-C3d)-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of (anti-gp120 Ɨ anti-C3d)-Fc lysis of HIV compared to untreated virus. IMPLICATIONS OF THE HYPOTHESIS: The targeted complement activator, (anti-gp120 Ɨ anti-C3d)-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells

    Severe Pneumonia Caused by Coinfection With Influenza Virus Followed by Methicillin-Resistant Staphylococcus aureus Induces Higher Mortality in Mice

    Get PDF
    Background: Coinfection with influenza virus and bacteria is a major cause of high mortality during flu pandemics. Understanding the mechanisms behind such coinfections is of utmost importance both for the clinical treatment of influenza and the prevention and control of epidemics.Methods: To investigate the cause of high mortality during flu pandemics, we performed coinfection experiments with H1N1 influenza virus and Staphylococcus aureus in which mice were infected with bacteria at time points ranging from 0 to 7 days after infection with influenza virus.Results: The mortality rates of mice infected with bacteria were highest 0ā€“3 days after infection with influenza virus; lung tissues extracted from these co-infected mice showed higher infiltrating cells and thicker lung parenchyma than lung samples from coinfected mice in which influenza virus was introduced at other times and sequences. The levels of interferon (IFN)-Ī³, tumor necrosis factor (TNF)-Ī±, interleukin (IL)-8, and IL-6 in the 0ā€“3 day coinfected group were significantly higher than those in the other groups (p < 0.01), as were the mRNA levels of IFN-Ī³, IL-6, and TNF-Ī±. Coinfection with influenza virus and S. aureus led to high mortality rates that are directly dependent on the sequence and timing of infection by both pathogens. Moreover, coinfection following this particular schedule induced severe pneumonia, leading to increased mortality.Conclusions: Our data suggest that prevention of bacterial co-infection in the early stage of influenza virus infection is critical to reducing the risk of clinical mortality

    Verification of PEMS measurement accuracy based on light vehicle emission test system

    No full text
    For the requirements of the portable emission measurement system (PEMS) measurement accuracy for limits and measurement methods for emissions from light-duty vehicles(CHINA 6), based on the light-duty vehicle emission test system in steady-state conditions and WLTC conditions for PEMS gaseous pollutants, mass flow rate , particle number (PN) verify accuracy of measurement. The results showed that the relative measurement errors of CO, CO2, NOx, fuel consumption and mass flow rate were āˆ’5.49%, 2.53%, 10.55%, 2.09% and āˆ’2.79%. The relative measurement errors of CO, CO2, NOx, fuel consumption and PN under WLTC condition were 6.67%, 2.54%, 12.96%, 2.37% and āˆ’16.08%, which meeting the requirements of the regulations

    Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

    No full text
    Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) effectively separates the fault vibration signals of rolling bearings and improves the diagnosis of rolling bearing faults. However, CEEMDAN has high memory requirements and low computational efficiency. In each iteration of CEEMDAN, fault vibration signals are added with noises, both the vibration signals added with noises and the added noises are decomposed with classical empirical mode decomposition (EMD). This paper proposes a rolling bearing fault diagnosis method that combines piecewise aggregate approximation (PAA) with CEEMDAN. PAA enables CEEMDAN to decompose long signals and to achieve enhanced diagnosis. In particular, the method first yields the vibration envelope using bandpass filtering and demodulation, then compresses the envelope using PAA, and finally decomposes the compressed signal with CEEMDAN. Test data verification results show that the proposed method is more effective and more efficient than CEEMDAN

    Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating

    No full text
    In this paper, a dynamic impregnating device, which can generate supersonic vibration with the vacuum-adsorbing field, was used to prepare the hybrid graphene oxide (GO)/polyethylene glycol (PEG). Interestingly, the hybrid GO/PEG under dynamic impregnating and/or internal mixing was introduced into poly-(lactic acid) (PLA) matrix via melting-compounding, respectively. On one hand, compared with the internal mixing, the hybrid GO/PEG with the different component ratio using dynamic impregnation had a better dispersed morphology in the PLA matrix. On the other hand, compared with the high molecular weight (Mw) of PEG, the hybrid GO/PEG with low Mw of PEG had better an exfoliated morphology and significantly improved the heat distortion temperature (HDT) of the PLA matrix. Binding energies results indicate that low Mw of PEG with GO has excellent compatibility. Dispersed morphologies of the hybrid GO/PEG show that the dynamic impregnating had stronger blending capacity than the internal mixing and obviously improved the exfoliated morphology of GO in the PLA. Crystallization behaviors indicate that the hybrid GO/PEG with the low Mw of PEG based on dynamic impregnating effectively enhanced the crystallinity of PLA, and the cold crystallization character of PLA disappeared in the melting process. Moreover, the storage modulus and loss factor of the PLA-based composites were also investigated and their HDT was improved with the introduction of hybrid GO/PEG. Furthermore, a physical model for the dispersed morphology of the hybrid GO/PEG in the PLA matrix was established. Overall, the unique blending technique of hybrid GO/PEG via dynamic impregnating is an effective approach to enhance the property range of PLA and is suitable for many industrial applications
    • ā€¦
    corecore