2 research outputs found
Maturation and Function of the Intercalated Disc: Report of Two Pediatric Cases Focusing on Cardiac Development and Myocardial Hyperplasia
The development of the normal human heart, ranging from gestational age to the mature adult heart, relies on a very delicate and timely orchestrated order of processes. One of the most striking alterations in time is the gradual extinction of the ability for cardiomyocytes to proliferate. Once passing this event, cardiomyocytes grow and increase in contractile strength by means of physiological hypertrophy. This process, importantly, seems to depend on an adequate development of electromechanical coupling that is achieved by the appropriate formation of the intercellular junction named the intercalated disc (ICD). In this report, we describe two sudden death cases of young and apparently healthy-born individuals without external abnormalities compared to an age-matched control. Histological examination, including the comparison with the age-matched and histology-matched controls, showed a disturbed formation of the protein machinery composing the electromechanical junctions at the ICD and an increased nuclei count for both patients. As a cause or consequence, cardiomyocytes in both sudden death cases showed signs of a delayed developmental stage, presumably resulting in an exaggerated degree of hyperplasia
Pro-Arrhythmic Potential of Accumulated Uremic Toxins Is Mediated via Vulnerability of Action Potential Repolarization
Chronic kidney disease (CKD) is represented by a diminished filtration capacity of the kidneys. End-stage renal disease patients need dialysis treatment to remove waste and toxins from the circulation. However, endogenously produced uremic toxins (UTs) cannot always be filtered during dialysis. UTs are among the CKD-related factors that have been linked to maladaptive and pathophysiological remodeling of the heart. Importantly, 50% of the deaths in dialysis patients are cardiovascular related, with sudden cardiac death predominating. However, the mechanisms responsible remain poorly understood. The current study aimed to assess the vulnerability of action potential repolarization caused by exposure to pre-identified UTs at clinically relevant concentrations. We exposed human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and HEK293 chronically (48 h) to the UTs indoxyl sulfate, kynurenine, or kynurenic acid. We used optical and manual electrophysiological techniques to assess action potential duration (APD) in the hiPSC-CMs and recorded I Kr currents in stably transfected HEK293 cells (HEK-hERG). Molecular analysis of K V11.1, the ion channel responsible for I Kr, was performed to further understand the potential mechanism underlying the effects of the UTs. Chronic exposure to the UTs resulted in significant APD prolongation. Subsequent assessment of the repolarization current I Kr, often most sensitive and responsible for APD alterations, showed decreased current densities after chronic exposure to the UTs. This outcome was supported by lowered protein levels of K V11.1. Finally, treatment with an activator of the I Kr current, LUF7244, could reverse the APD prolongation, indicating the potential modulation of electrophysiological effects caused by these UTs. This study highlights the pro-arrhythmogenic potential of UTs and reveals a mode of action by which they affect cardiac repolarization