9 research outputs found

    Wake interaction and power production of variable height model wind farms

    Get PDF
    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating

    This content has been downloaded from IOPscience. Please scroll down to see the full text. Kinetic energy entrainment in wind turbine and actuator disc wakes: an experimental analysis Kinetic energy entrainment in wind turbine and actuator disc wakes: an

    No full text
    Abstract. The present experimental study focuses on the comparison between the wake of a two-bladed wind turbine and the one of an actuator disk. The flow field at the middle plane of the wake is measured with a stereoscopic particle image velocimetry setup, in the low-speed Open Jet Facility wind tunnel of the Delft University of Technology. The wind turbine wake is characterized by the complex dynamics of the tip vortex development and breakdown. Analysis of the flow statistics show anisotropic turbulent fluctuations in the turbine wake, with stronger components in the radial direction. The wake of the actuator disc is instead characterized by isotropic random fluctuations. The mixing process in the shear layer is further analysed in terms of flux of mean flow kinetic energy, to show the main differences between the kinetic energy entrainment in the actuator and the turbine wake. This project is intended to provide the basis for understanding the origin of the limitations of the current wake models based on the actuator disc assumption
    corecore