657 research outputs found
The KLASH Proposal
We propose a search of galactic axions with mass about 0.2 µeV using a large volume resonant cavity, about 50 m3, cooled down to 4 K and immersed in a moderate axial magnetic field of about 0.6 T generated inside the superconducting magnet of the KLOE experiment [1] located at the National Laboratory of Frascati of INFN. This experiment, called KLASH (KLoe magnet for Axion SearcH) in the following, has a potential sensitivity on the axion-to-photon coupling, gaγγ, of about 6 × 10−17 GeV−1, reaching the region predicted by KSVZ [2] and DFSZ [3] models of QCD axions
Searching for galactic axions through magnetized media: QUAX status report
The current status of the QUAX R\&D program is presented. QUAX is a
feasibility study for a detection of axion as dark matter based on the coupling
to the electrons. The relevant signal is a magnetization change of a magnetic
material placed inside a resonant microwave cavity and polarized with a static
magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs,
Thessaloniki, May 15 to 19, 201
Axion search with a quantum-limited ferromagnetic haloscope
A ferromagnetic axion haloscope searches for Dark Matter in the form of
axions by exploiting their interaction with electronic spins. It is composed of
an axion-to-electromagnetic field transducer coupled to a sensitive rf
detector. The former is a photon-magnon hybrid system, and the latter is based
on a quantum-limited Josephson parametric amplifier. The hybrid system consists
of ten 2.1 mm diameter YIG spheres coupled to a single microwave cavity mode by
means of a static magnetic field. Our setup is the most sensitive rf
spin-magnetometer ever realized. The minimum detectable field is
T with 9 h integration time, corresponding to a limit on
the axion-electron coupling constant at 95% CL.
The scientific run of our haloscope resulted in the best limit on DM-axions to
electron coupling constant in a frequency span of about 120 MHz, corresponding
to the axion mass range -eV. This is also the first apparatus
to perform an axion mass scanning by changing the static magnetic field.Comment: 4 pages, 4 figure
Hidden but Ubiquitous: The Pre-Rift Continental Mantle in the Red Sea Region
Volcanism in the western part of the Arabian plate resulted in one of the largest alkali basalt provinces in the world, where lava fields with sub-alkaline to alkaline affinity are scattered from Syria and the Dead Sea Transform Zone through western Saudi Arabia to Yemen. After the Afar plume emplacement (∼30 Ma), volcanism took place in Yemen and progressively propagated northward due to Red Sea rifting-related lithospheric thinning (initiated ∼27–25 Ma). Few lava fields were emplaced during the Mesozoic, with the oldest 200 Ma volcanic activity recorded in northern Israel. We report results from volcanic pipes in the Marthoum area, east of Harrat Uwayrid, where over a hundred pipes occupy a stratigraphic level in the early Ordovician Saq sandstones. Most of them are circular or elliptical features marked by craters aligned along NW-SE fractures in the sandstone resulting from phreatomagmatic explosions that occurred when rising magma columns came in contact with the water table in the porous sandstone host. These lavas have Sr-Pb-Nd-Hf isotopic compositions far from the Cenozoic Arabian alkaline volcanism field, being considerably more enriched in Nd-Hf and Pb isotopes than any other Arabian Plate lava ever reported. New K-Ar dating constrains their age from Late Cretaceous to Early Eocene, thus anticipating the Afar plume emplacement and the Red Sea rift. Basalt geochemistry indicates that these volcanic eruptions formed from low-degree partial melting of an enriched lithospheric mantle source triggered by local variations in the asthenosphere-lithosphere boundary. This mantle source has a composition similar to the HIMU-like enriched isotopic component reported in the East African Rift and considered to represent the lowermost lithospheric mantle of the Nubian Shield. The generated melt, mixed in different proportions with melt derived from a depleted asthenosphere, produces the HIMU-like character throughout the Cenozoic Arabian alkaline volcanism. Although apparently hidden, this enriched lithospheric component is therefore ubiquitous and widespread in the cratonic roots of the African and Arabian subcontinental mantle
The cryogenic magneto-optical device for terahertz radiation detection
We present here a small-scale liquid Helium (LHe) immersion cryostat with an innovative optical setup suitable to work in long wavelength radiation ranges and under applied magnetic field. The cryostat is a multi stage device with several shielding in addition to several optical stages. The system has been designed with an external liquid Nitrogen boiler to reduce the liquid bubbling. The optical and mechanical properties of the optical elements were calculated and optimized for the designed configuration while the optical layout has been simulated and optimized among different configurations based on the geometry of the device. The final design has been optimized for low noise radiation measurements of proximity junction arrays under applied magnetic field in the wavelength range λ=250-2500 µm
A cryogenic magneto-optical device for long wavelength radiation
We present here a small-scale liquid helium immersion cryostat with an innovative optical setup suitable to work in long wavelength radiation ranges and under an applied magnetic field. The cryostat is a multi-stage device with several shielding in addition to several optical stages. The system has been designed with an external liquid nitrogen boiler to reduce liquid bubbling. The optical and mechanical properties of the optical elements were calculated and optimized for the designed configuration, while the optical layout has been simulated and optimized among different configurations based on the geometry of the device. The final design has been optimized for low-noise radiation measurements of proximity junction arrays under an applied magnetic field in the wavelength range λ = 250 μm-2500 μm
The CUORE Cryostat: A 1-Ton Scale Setup for Bolometric Detectors
The cryogenic underground observatory for rare events (CUORE) is a 1-ton
scale bolometric experiment whose detector consists of an array of 988 TeO2
crystals arranged in a cylindrical compact structure of 19 towers. This will be
the largest bolometric mass ever operated. The experiment will work at a
temperature around or below 10 mK. CUORE cryostat consists of a cryogen-free
system based on pulse tubes and a custom high power dilution refrigerator,
designed to match these specifications. The cryostat has been commissioned in
2014 at the Gran Sasso National Laboratories and reached a record temperature
of 6 mK on a cubic meter scale. In this paper, we present results of CUORE
commissioning runs. Details on the thermal characteristics and cryogenic
performances of the system will be also given.Comment: 7 pages, 2 figures, LTD16 conference proceedin
Improving the surface brightness-color relation for early-type stars using optical interferometry
The aim of this work is to improve the SBC relation for early-type stars in
the color domain, using optical interferometry.
Observations of eight B- and A-type stars were secured with the VEGA/CHARA
instrument in the visible. The derived uniform disk angular diameters were
converted into limb darkened angular diameters and included in a larger sample
of 24 stars, already observed by interferometry, in order to derive a revised
empirical relation for O, B, A spectral type stars with a V-K color index
ranging from -1 to 0. We also took the opportunity to check the consistency of
the SBC relation up to using 100 additional measurements. We
determined the uniform disk angular diameter for the eight following stars:
Ori, Per, Cyg, Her, Aql, Peg,
Lyr, and Cyg with V-K color ranging from -0.70 to 0.02 and
typical precision of about . Using our total sample of 132 stars with
colors index ranging from about to , we provide a revised SBC
relation. For late-type stars (), the results are consistent
with previous studies. For early-type stars (), our new
VEGA/CHARA measurements combined with a careful selection of the stars
(rejecting stars with environment or stars with a strong variability), allows
us to reach an unprecedented precision of about 0.16 magnitude or
in terms of angular diameter.Comment: 13 pages, 5 figures, accepted for publication in A&
- …