16 research outputs found

    Longitudinal identification of clinically distinct neurophenotypes in young children with fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is the most common known inherited cause of developmental disability. The cognitive, behavioral, and neurological phenotypes observed in affected individuals can vary considerably, making it difficult to predict outcomes and determine the need for interventions. We sought to examine early structural brain growth as a potential marker for identification of clinically meaningful subgroups. Participants included 42 very young boys with FXS who completed a T1-weighted anatomical MRI and cognitive/behavioral assessment at two longitudinal time points, with mean ages of 2.89 y and 4.91 y. Topological data analysis (TDA), an unsupervised approach to multivariate pattern analysis, was applied to the longitudinal anatomical data to identify coherent but heretofore unknown subgroups. TDA revealed two large subgroups within the study population based solely on longitudinal MRI data. Post hoc comparisons of cognition, adaptive functioning, and autism severity scores between these groups demonstrated that one group was consistently higher functioning on all measures at both time points, with pronounced and significant unidirectional differences (P < 0.05 for time point 1 and/or time point 2 for each measure). These results support the existence of two longitudinally defined, neuroanatomically distinct, and clinically relevant phenotypes among boys with FXS. If confirmed by additional analyses, such information may be used to predict outcomes and guide design of targeted therapies. Furthermore, TDA of longitudinal anatomical MRI data may represent a useful method for reliably and objectively defining subtypes within other neuropsychiatric disorders

    Morphometric Spatial Patterns Differentiating Boys With Fragile X Syndrome, Typically Developing Boys, and Developmentally Delayed Boys Aged 1 to 3 Years

    Get PDF
    Brain maturation starts well before birth and occurs as a unified process with developmental interaction among different brain regions. Gene and environment play large roles in such process. Studies of genetic disorders such as fragile X syndrome (FXS) which is a disorder caused by a single gene mutation resulting in abnormal dendritic and synaptic pruning, together with healthy individuals may provide valuable information

    Neuroanatomical Differences in Toddler Boys With Fragile X Syndrome and Idiopathic Autism

    Get PDF
    Autism is an etiologically heterogeneous neurodevelopmental disorder for which there is no known unifying etiology or pathogenesis. Many conditions of atypical development can lead to autism, including fragile X syndrome (FXS), which is presently the most common known single gene cause of autism

    Topological methods reveal high and low functioning neuro-phenotypes within fragile X syndrome: Topology Finds Fragile X Syndrome Phenotypes

    Get PDF
    Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is the most common known inherited cause of developmental disability as well as the most common single-gene risk factor for autism. Our goal was to examine variation in brain structure in FXS with topological data analysis (TDA), and to assess how such variation is associated with measures of IQ and autism-related behaviors. To this end, we analyzed imaging and behavioral data from young boys (n=52; aged 1.57-4.15 years) diagnosed with FXS. Application of topological methods to structural MRI data revealed two large subgroups within the study population. Comparison of these subgroups showed significant between-subgroup neuroanatomical differences similar to those previously reported to distinguish children with FXS from typically developing controls (e.g., enlarged caudate). In addition to neuroanatomy, the groups showed significant differences in IQ and autism severity scores. These results suggest that despite arising from a single gene mutation, fragile X syndrome may encompass two biologically and clinically separable phenotypes. In addition, these findings underscore the potential of TDA as a powerful tool in the search for biological phenotypes of neuropsychiatric disorders

    Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism

    Get PDF
    To examine brain volumes in substructures associated with the behavioral features of children with FXS compared to children with idiopathic autism and controls. A cross-sectional study of brain substructures was conducted at the first time-point as part of an ongoing longitudinal MRI study of brain development in FXS. The study included 52 boys between 18–42 months of age with FXS and 118 comparison children (boys with autism-non FXS, developmental-delay, and typical development). Children with FXS and autistic disorder had substantially enlarged caudate volume and smaller amygdala volume; whereas those children with autistic disorder without FXS (i.e., idiopathic autism) had only modest enlargement in their caudate nucleus volumes but more robust enlargement of their amygdala volumes. Although we observed this double dissociation among selected brain volumes, no significant differences in severity of autistic behavior between these groups were observed. This study offers a unique examination of early brain development in two disorders, FXS and idiopathic autism, with overlapping behavioral features, but two distinct patterns of brain morphology. We observed that despite almost a third of our FXS sample meeting criteria for autism, the profile of brain volume differences for children with FXS and autism differed from those with idiopathic autism. These findings underscore the importance of addressing heterogeneity in studies of autistic behavior

    Glucocorticoid regulation and neuroanatomy in fragile x syndrome.

    No full text
    Fragile X syndrome (FXS) is the leading known inherited cause for intellectual disability. Due to mutations in the FMR1 gene, affected individuals are at risk for serious cognitive and behavioral symptoms and developmental disability. Clinical presentation varies considerably, and investigation of genetic factors not directly related to FMR1 may help better understand variability. The present study examined the BclI polymorphism of the glucocorticoid receptor gene NR3C1 in 43 individuals with FXS (28 females, age 16 to 25). Females with FXS who presented with one or more G alleles demonstrated attenuated symptoms of anxiety/depression (p = 0.038) and externalizing behaviors (p = 0.042) relative to individuals with the C/C allele. In the combined sample (males and females) structural neuroimaging data differentiated individuals with a G allele from those with the C/C genotype (p \u3c 0.001). Key components of anxiety/fear neurocircuitry (amygdala, insula) contributed more (relative to other regions) to the model differentiating groups. These results indicate that GR polymorphisms are associated with an altered pattern of behavioral and brain development in FXS. This information is important for understanding and treating mood disorders and altered brain development among individuals with FXS. With further research, these findings could be informative for understanding anxiety and mood disorders more broadly

    Trajectories of Early Brain Volume Development in Fragile X Syndrome and Autism

    No full text
    OBJECTIVE: To examine patterns of early brain growth in young children with fragile X syndrome (FXS) compared to a comparison group (controls) and a group with idiopathic autism. METHOD: The study included 53 boys between 18–42 months of age with FXS, 68 boys with idiopathic autism (ASD), and a comparison group of 50 typically-developing and developmentally-delayed controls. We examined structural brain volumes using magnetic resonance imaging (MRI) across two timepoints between ages 2–3 and 4–5 years and examined total brain volumes and regional (lobar) tissue volumes. Additionally, we studied a selected group of subcortical structures implicated in the behavioral features of FXS (e.g., basal ganglia, hippocampus, amygdala). RESULTS: Children with FXS had greater global brain volumes compared to controls, but were not different than children with idiopathic autism, and the rate of brain growth between ages 2 and 5 paralleled that seen in controls. In contrast to the children with idiopathic autism who had generalized cortical lobe enlargement, the children with FXS showed a specific enlargement in temporal lobe white matter, cerebellar gray matter, and caudate nucleus, but significantly smaller amygdala. CONCLUSIONS: This structural longitudinal MRI study of preschoolers with FXS observed generalized brain overgrowth in FXS compared to controls, evident at age 2 and maintained across ages 4–5. We also find different patterns of brain growth that distinguishes boys with FXS from children with idiopathic autism

    Evidence of a Distinct Behavioral Phenotype in Young Boys With Fragile X Syndrome and Autism

    No full text
    OBJECTIVE: How does the behavioral expression of autism in fragile X syndrome (FXS+Aut) compare to idiopathic autism (iAut)? While social impairments and restricted, repetitive behaviors (RRBs) are common to both variants of autism, closer examination of these symptom domains may reveal meaningful similarities and differences. To this end, we profiled the specific behaviors comprising the social and repetitive behavioral domains in young children with FXS+Aut and iAut. METHOD: Twenty-three males ages 3–5 years with FXS + Aut were age-matched with a group of 38 boys with iAut. Repetitive behavior was assessed using the RBS-R. Social behavior was evaluated using Autism Diagnostic Observation Schedule (ADOS) social item severity scores. RESULTS: Rates of stereotypy, self-injury, and sameness behaviors did not differ between groups, whereas compulsive and ritual behavior scores were significantly lower for individuals with FXS + Aut compared to iAut. Those with FXS + Aut scored significantly lower (less severe) than the iAut group on five ADOS measures of social behavior: Gaze Integration, Quality of Social Overtures, Social Smile, Facial Expressions, and Response to Joint Attention. CONCLUSIONS: The behavioral phenotype of FXS + Aut and iAut are most similar with respect to lower-order (motoric) RRBs and social approach, but differ in more complex forms of RRB and some social response behaviors. These findings highlight the phenotypic heterogeneity of autism overall and its unique presentation in an etiologically distinct condition
    corecore