3,446 research outputs found

    Application of the Lifshitz theory to poor conductors

    Get PDF
    The Lifshitz formula for the dispersive forces is generalized to the materials, which cannot be described with the local dielectric response. Principal nonlocality of poor conductors is related with the finite screening length of the penetrating field and the collisional relaxation; at low temperatures the role of collisions plays the Landau damping. The spatial dispersion makes the theory self consistent. Our predictions are compared with the recent experiment. It is demonstrated that at low temperatures the Casimir-Lifshitz entropy disappears as TT in the case of degenerate plasma and as T2T^2 for the nondegenerate one.Comment: Accepted for publication in PR

    Nonlocal impedances and the Casimir entropy at low temperatures

    Get PDF
    The problem with the temperature dependence of the Casimir force is investigated. Specifically, the entropy behavior in the low temperature limit, which caused debates in the literature, is analyzed. It is stressed that the behavior of the relaxation frequency in the T→0T\to0 limit does not play a physical role since the anomalous skin effect dominates in this range. In contrast with the previous works, where the approximate Leontovich impedance was used for analysis of nonlocal effects, we give description of the problem in terms of exact nonlocal impedances. It is found that the Casimir entropy is going to zero at T→0T\to0 only in the case when ss polarization does not contribute to the classical part of the Casimir force. However, the entropy approaching zero from the negative side that, in our opinion, cannot be considered as thermodynamically satisfactory. The resolution of the negative entropy problem proposed in the literature is analyzed and it is shown that it cannot be considered as complete. The crisis with the thermal Casimir effect is stressed.Comment: Accepted in Phys. Rev.

    A generalized Kramers-Kronig transform for Casimir effect computations

    Full text link
    Recent advances in experimental techniques now permit to measure the Casimir force with unprecedented precision. In order to achieve a comparable precision in the theoretical prediction of the force, it is necessary to accurately determine the electric permittivity of the materials constituting the plates along the imaginary frequency axis. The latter quantity is not directly accessible to experiments, but it can be determined via dispersion relations from experimental optical data. In the experimentally important case of conductors, however, a serious drawback of the standard dispersion relations commonly used for this purpose, is their strong dependence on the chosen low-frequency extrapolation of the experimental optical data, which introduces a significant and not easily controllable uncertainty in the result. In this paper we show that a simple modification of the standard dispersion relations, involving suitable analytic window functions, resolves this difficulty, making it possible to reliably determine the electric permittivity at imaginary frequencies solely using experimental optical data in the frequency interval where they are available, without any need of uncontrolled data extrapolations.Comment: 10 pages, 6 encapsulated figures. A few typos corrected, some references added. The new version matches the one accepted for publication on Phys. Rev.

    Comparison of the experimental data for the Casimir pressure with the Lifshitz theory at zero temperature

    Full text link
    We perform detailed comparison of the experimental data of the experiment on the determination of the Casimir pressure between two parallel Au plates with the theoretical values computed using the Lifshitz formula at zero temperature. Computations are done using the optical data for the complex index of refraction of Au extrapolated to low frequencies by means of the Drude model with both most often used and other suggested Drude parameters. It is shown that the experimental data exclude the Lifshitz formula at zero temperature at a 70% confidence level if the Drude model with most often used values of the parameters is employed. If other values of the Drude parameters are used, the Lifshitz formula at zero frequency is experimentally excluded at a 95% confidence level. The Lifshitz formula at zero temperature combined with the generalized plasma-like model with most often used value of the plasma frequency is shown to be experimentally consistent. We propose a decisive experiment which will shed additional light on the role of relaxation properties of conduction electrons in the Casimir effect.Comment: 22 pages, 6 figures; Phys. Rev. B, to appea

    Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interations

    Full text link
    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed.Comment: 11 pages, 5 figures, 2 tables; to appear in Phys. Rev. B; misprints in Eqs.(33) and (34) are correcte

    Exact results for Casimir interactions between dielectric bodies: The weak-coupling or van der Waals Limit

    Full text link
    In earlier papers we have applied multiple scattering techniques to calculate Casimir forces due to scalar fields between different bodies described by delta function potentials. When the coupling to the potentials became weak, closed-form results were obtained. We simplify this weak-coupling technique and apply it to the case of tenuous dielectric bodies, in which case the method involves the summation of van der Waals (Casimir-Polder) interactions. Once again exact results for finite bodies can be obtained. We present closed formulas describing the interaction between spheres and between cylinders, and between an infinite plate and a retangular slab of finite size. For such a slab, we consider the torque acting on it, and find non-trivial equilibrium points can occur.Comment: 4 pages, 3 figure

    Symmetry of Magnetically Ordered Quasicrystals

    Get PDF
    The notion of magnetic symmetry is reexamined in light of the recent observation of long range magnetic order in icosahedral quasicrystals [Charrier et al., Phys. Rev. Lett. 78, 4637 (1997)]. The relation between the symmetry of a magnetically-ordered (periodic or quasiperiodic) crystal, given in terms of a ``spin space group,'' and its neutron diffraction diagram is established. In doing so, an outline of a symmetry classification scheme for magnetically ordered quasiperiodic crystals is provided. Predictions are given for the expected diffraction patterns of magnetically ordered icosahedral crystals, provided their symmetry is well described by icosahedral spin space groups.Comment: 5 pages. Accepted for publication in Phys. Rev. Letter

    Casimir-Lifshitz force out of thermal equilibrium

    Get PDF
    We study the Casimir-Lifshitz interaction out of thermal equilibrium, with particular attention devoted to the surface-surface and surface-atom configurations. A systematic investigation of the contributions to the force coming from the propagating and evanescent components of the electromagnetic radiation is performed. The large distance behaviors of such interactions is discussed, and both analytical and numerical results are compared with the equilibrium ones. A detailed analysis of the crossing between the surface-surface and the surface-rarefied body, and finally the surface-atom force is shown, and a complete derivation and discussion of the recently predicted non-additivity effects and new asymptotic behaviors is presented.Comment: 26 pages, 11 figures. Published version, revised and more detaile

    The Boson Peak and its Relation with Acoustic Attenuation in Glasses

    Full text link
    Experimental results on the density of states and on the acoustic modes of glasses in the THz region are compared to the predictions of two categories of models. A recent one, solely based on an elastic instability, does not account for most observations. Good agreement without adjustable parameters is obtained with models including the existence of non-acoustic vibrational modes at THz frequency, providing in many cases a comprehensive picture for a range of glass anomalies.Comment: 4 pages, 3 figures, Physical Review Letters in pres

    Unconventional strongly interacting Bose-Einstein condensates in optical lattices

    Full text link
    Feschbach resonances in a non-s-wave channel of two-component bosonic mixtures can induce atomic Bose Einstein condensates with a non-zero orbital momentum in the optical lattice, if one component is in the Mott insulator state and the other is not. Such non-s-wave condensates break the symmetry of the lattice and, in some cases, time-reversal symmetry. They can be revealed in specific absorption imaging patterns.Comment: Replaced with revised version. References are adde
    • …
    corecore