691 research outputs found

    Assignment Algorithms for Multi-Robot Multi-Target Tracking with Sufficient and Limited Sensing Capability

    Full text link
    We study the problem of assigning robots with actions to track targets. The objective is to optimize the robot team's tracking quality which can be defined as the reduction in the uncertainty of the targets' states. Specifically, we consider two assignment problems given the different sensing capabilities of the robots. In the first assignment problem, a single robot is sufficient to track a target. To this end, we present a greedy algorithm (Algorithm 1) that assigns a robot with its action to each target. We prove that the greedy algorithm has a 1/2 approximation bound and runs in polynomial time. Then, we study the second assignment problem where two robots are necessary to track a target. We design another greedy algorithm (Algorithm 2) that assigns a pair of robots with their actions to each target. We prove that the greedy algorithm achieves a 1/3 approximation bound and has a polynomial running time. Moreover, we illustrate the performance of the two greedy algorithms in the ROS-Gazebo environment where the tracking patterns of one robot following one target using Algorithm 1 and two robots following one target using Algorithm 2 are clearly observed. Further, we conduct extensive comparisons to demonstrate that the two greedy algorithms perform close to their optimal counterparts and much better than their respective (1/2 and 1/3) approximation bounds

    MEDIA DEVELOPMENT MODELS IN VIRTUAL WORLD

    Get PDF
    This paper studies three digital media development models in virtual world. We characterize the reve-nue mechanisms behind each model, by incorporating the concept of horizontal and vertical supply chain integration of digital media industry. We incorporate the core value of digital media develop-ment in the first model, which considers digital media as information goods. Pricing, quality differen-tiation, quantity discrimination, and content design combined determine the VW popularity and the financial performance. Based on the first model, the second model incorporates the advertising reve-nue. It becomes essential to optimize both information goods revenue and advertising revenue, while increasing one would decrease the other due to the traffic dynamics. Based on the first two models, the third model considers both vertical and horizontal supply chain integration in the digital media indus-try. In this model, we add one extra dimension of network externality that leads to better understand-ing of consumers, suppliers, and their mutual interest. Based on these three models, we suggest several strategic implications that facilitate operations, increase revenue, and enhance consumer experience, including strategic alliance, reduction of virtual-real world barriers, and tailored advertisement

    Double Oracle Algorithm for Game-Theoretic Robot Allocation on Graphs

    Full text link
    We study the problem of game-theoretic robot allocation where two players strategically allocate robots to compete for multiple sites of interest. Robots possess offensive or defensive capabilities to interfere and weaken their opponents to take over a competing site. This problem belongs to the conventional Colonel Blotto Game. Considering the robots' heterogeneous capabilities and environmental factors, we generalize the conventional Blotto game by incorporating heterogeneous robot types and graph constraints that capture the robot transitions between sites. Then we employ the Double Oracle Algorithm (DOA) to solve for the Nash equilibrium of the generalized Blotto game. Particularly, for cyclic-dominance-heterogeneous (CDH) robots that inhibit each other, we define a new transformation rule between any two robot types. Building on the transformation, we design a novel utility function to measure the game's outcome quantitatively. Moreover, we rigorously prove the correctness of the designed utility function. Finally, we conduct extensive simulations to demonstrate the effectiveness of DOA on computing Nash equilibrium for homogeneous, linear heterogeneous, and CDH robot allocation on graphs

    Dispersed operating time control of a mechanical switch actuated by an ultrasonic motor

    Get PDF
    The ultrasonic motor is an uncertain time-varying nonlinear system because of the nonlinearity of the piezoelectric material, the friction and the temperature. For example, the operating time of the mechanical switch actuated by the ultrasonic motor in regular stroke is highly dispersed. Unfortunately, it is difficult to establish accurate mathematical model. In this paper, an analytical autoregressive process model (AR) is employed to identify and control the ultrasonic motor. First of all, dispersed operating time of the mechanical switch actuated by the ultrasonic motor is investigated. Then, the AR model is established to predict the operating time of the ultrasonic motor on the basis of the statistical data to reduce the nonlinear behavior of the ultrasonic motor, and to improve the accuracy and obtain a good time response of the switch. The simulation results are agreed with experimental results, confirming the effectiveness of proposed model. Furthermore, we adopt the predicted result of the AR model to control the mechanical switch actuated by the ultrasonic motor. The analytical investigation is fulfilled with two target operating time ranges, namely 12 ms and 24 ms. Comparison of the results obtained from the AR model and the experimentation reveal that the standard deviations are less than 95.3 μs and 102.7 μs with maximum errors equal to 0.41 % and 0.44 % respectively. Thereby, the proposed dispersed operating time control is performed. Findings indicate that the maximum errors for the operating time of the mechanical switch are less than 140 μs and 110 μs with ±0.85 % and ±0.42 % respectively
    • …
    corecore